Skip to content
This repository has been archived by the owner on Apr 21, 2024. It is now read-only.

Latest commit

 

History

History
71 lines (71 loc) · 49.1 KB

20210129.md

File metadata and controls

71 lines (71 loc) · 49.1 KB

ArXiv cs.CV --Fri, 29 Jan 2021

1.Playable Video Generation ⬇️

This paper introduces the unsupervised learning problem of playable video generation (PVG). In PVG, we aim at allowing a user to control the generated video by selecting a discrete action at every time step as when playing a video game. The difficulty of the task lies both in learning semantically consistent actions and in generating realistic videos conditioned on the user input. We propose a novel framework for PVG that is trained in a self-supervised manner on a large dataset of unlabelled videos. We employ an encoder-decoder architecture where the predicted action labels act as bottleneck. The network is constrained to learn a rich action space using, as main driving loss, a reconstruction loss on the generated video. We demonstrate the effectiveness of the proposed approach on several datasets with wide environment variety. Further details, code and examples are available on our project page this http URL.

2.Discriminative Appearance Modeling with Multi-track Pooling for Real-time Multi-object Tracking ⬇️

In multi-object tracking, the tracker maintains in its memory the appearance and motion information for each object in the scene. This memory is utilized for finding matches between tracks and detections and is updated based on the matching result. Many approaches model each target in isolation and lack the ability to use all the targets in the scene to jointly update the memory. This can be problematic when there are similar looking objects in the scene. In this paper, we solve the problem of simultaneously considering all tracks during memory updating, with only a small spatial overhead, via a novel multi-track pooling module. We additionally propose a training strategy adapted to multi-track pooling which generates hard tracking episodes online. We show that the combination of these innovations results in a strong discriminative appearance model, enabling the use of greedy data association to achieve online tracking performance. Our experiments demonstrate real-time, state-of-the-art performance on public multi-object tracking (MOT) datasets.

3.Domain Adaptation by Topology Regularization ⬇️

Deep learning has become the leading approach to assisted target recognition. While these methods typically require large amounts of labeled training data, domain adaptation (DA) or transfer learning (TL) enables these algorithms to transfer knowledge from a labelled (source) data set to an unlabelled but related (target) data set of interest. DA enables networks to overcome the distribution mismatch between the source and target that leads to poor generalization in the target domain. DA techniques align these distributions by minimizing a divergence measurement between source and target, making the transfer of knowledge from source to target possible. While these algorithms have advanced significantly in recent years, most do not explicitly leverage global data manifold structure in aligning the source and target. We propose to leverage global data structure by applying a topological data analysis (TDA) technique called persistent homology to TL.
In this paper, we examine the use of persistent homology in a domain adversarial (DAd) convolutional neural network (CNN) architecture. The experiments show that aligning persistence alone is insufficient for transfer, but must be considered along with the lifetimes of the topological singularities. In addition, we found that longer lifetimes indicate robust discriminative features and more favorable structure in data. We found that existing divergence minimization based approaches to DA improve the topological structure, as indicated over a baseline without these regularization techniques. We hope these experiments highlight how topological structure can be leveraged to boost performance in TL tasks.

4.Fusion Moves for Graph Matching ⬇️

We contribute to approximate algorithms for the quadratic assignment problem also known as graph matching. Inspired by the success of the fusion moves technique developed for multilabel discrete Markov random fields, we investigate its applicability to graph matching. In particular, we show how it can be efficiently combined with the dedicated state-of-the-art Lagrange dual methods that have recently shown superior results in computer vision and bio-imaging applications. As our empirical evaluation on a wide variety of graph matching datasets suggests, fusion moves notably improve performance of these methods in terms of speed and quality of the obtained solutions. Hence, this combination results in a state-of-the-art solver for graph matching.

5.Vx2Text: End-to-End Learning of Video-Based Text Generation From Multimodal Inputs ⬇️

We present \textsc{Vx2Text}, a framework for text generation from multimodal inputs consisting of video plus text, speech, or audio. In order to leverage transformer networks, which have been shown to be effective at modeling language, each modality is first converted into a set of language embeddings by a learnable tokenizer. This allows our approach to perform multimodal fusion in the language space, thus eliminating the need for ad-hoc cross-modal fusion modules. To address the non-differentiability of tokenization on continuous inputs (e.g., video or audio), we utilize a relaxation scheme that enables end-to-end training. Furthermore, unlike prior encoder-only models, our network includes an autoregressive decoder to generate open-ended text from the multimodal embeddings fused by the language encoder. This renders our approach fully generative and makes it directly applicable to different "video+$x$ to text" problems without the need to design specialized network heads for each task. The proposed framework is not only conceptually simple but also remarkably effective: experiments demonstrate that our approach based on a single architecture outperforms the state-of-the-art on three video-based text-generation tasks -- captioning, question answering and audio-visual scene-aware dialog.

6.VAE^2: Preventing Posterior Collapse of Variational Video Predictions in the Wild ⬇️

Predicting future frames of video sequences is challenging due to the complex and stochastic nature of the problem. Video prediction methods based on variational auto-encoders (VAEs) have been a great success, but they require the training data to contain multiple possible futures for an observed video sequence. This is hard to be fulfilled when videos are captured in the wild where any given observation only has a determinate future. As a result, training a vanilla VAE model with these videos inevitably causes posterior collapse. To alleviate this problem, we propose a novel VAE structure, dabbed VAE-in-VAE or VAE$^2$. The key idea is to explicitly introduce stochasticity into the VAE. We treat part of the observed video sequence as a random transition state that bridges its past and future, and maximize the likelihood of a Markov Chain over the video sequence under all possible transition states. A tractable lower bound is proposed for this intractable objective function and an end-to-end optimization algorithm is designed accordingly. VAE$^2$ can mitigate the posterior collapse problem to a large extent, as it breaks the direct dependence between future and observation and does not directly regress the determinate future provided by the training data. We carry out experiments on a large-scale dataset called Cityscapes, which contains videos collected from a number of urban cities. Results show that VAE$^2$ is capable of predicting diverse futures and is more resistant to posterior collapse than the other state-of-the-art VAE-based approaches. We believe that VAE$^2$ is also applicable to other stochastic sequence prediction problems where training data are lack of stochasticity.

7.PIG-Net: Inception based Deep Learning Architecture for 3D Point Cloud Segmentation ⬇️

Point clouds, being the simple and compact representation of surface geometry of 3D objects, have gained increasing popularity with the evolution of deep learning networks for classification and segmentation tasks. Unlike human, teaching the machine to analyze the segments of an object is a challenging task and quite essential in various machine vision applications. In this paper, we address the problem of segmentation and labelling of the 3D point clouds by proposing a inception based deep network architecture called PIG-Net, that effectively characterizes the local and global geometric details of the point clouds. In PIG-Net, the local features are extracted from the transformed input points using the proposed inception layers and then aligned by feature transform. These local features are aggregated using the global average pooling layer to obtain the global features. Finally, feed the concatenated local and global features to the convolution layers for segmenting the 3D point clouds. We perform an exhaustive experimental analysis of the PIG-Net architecture on two state-of-the-art datasets, namely, ShapeNet [1] and PartNet [2]. We evaluate the effectiveness of our network by performing ablation study.

8.Tokens-to-Token ViT: Training Vision Transformers from Scratch on ImageNet ⬇️

Transformers, which are popular for language modeling, have been explored for solving vision tasks recently, e.g., the Vision Transformers (ViT) for image classification. The ViT model splits each image into a sequence of tokens with fixed length and then applies multiple Transformer layers to model their global relation for classification. However, ViT achieves inferior performance compared with CNNs when trained from scratch on a midsize dataset (e.g., ImageNet). We find it is because: 1) the simple tokenization of input images fails to model the important local structure (e.g., edges, lines) among neighboring pixels, leading to its low training sample efficiency; 2) the redundant attention backbone design of ViT leads to limited feature richness in fixed computation budgets and limited training samples.
To overcome such limitations, we propose a new Tokens-To-Token Vision Transformers (T2T-ViT), which introduces 1) a layer-wise Tokens-to-Token (T2T) transformation to progressively structurize the image to tokens by recursively aggregating neighboring Tokens into one Token (Tokens-to-Token), such that local structure presented by surrounding tokens can be modeled and tokens length can be reduced; 2) an efficient backbone with a deep-narrow structure for vision transformers motivated by CNN architecture design after extensive study. Notably, T2T-ViT reduces the parameter counts and MACs of vanilla ViT by 200%, while achieving more than 2.5% improvement when trained from scratch on ImageNet. It also outperforms ResNets and achieves comparable performance with MobileNets when directly training on ImageNet. For example, T2T-ViT with ResNet50 comparable size can achieve 80.7% top-1 accuracy on ImageNet. (Code: this https URL)

9.Rethinking Rotated Object Detection with Gaussian Wasserstein Distance Loss ⬇️

Boundary discontinuity and its inconsistency to the final detection metric have been the bottleneck for rotating detection regression loss design. In this paper, we propose a novel regression loss based on Gaussian Wasserstein distance as a fundamental approach to solve the problem. Specifically, the rotated bounding box is converted to a 2-D Gaussian distribution, which enables to approximate the indifferentiable rotational IoU induced loss by the Gaussian Wasserstein distance (GWD) which can be learned efficiently by gradient back-propagation. GWD can still be informative for learning even there is no overlapping between two rotating bounding boxes which is often the case for small object detection. Thanks to its three unique properties, GWD can also elegantly solve the boundary discontinuity and square-like problem regardless how the bounding box is defined. Experiments on five datasets using different detectors show the effectiveness of our approach. Codes are available at this https URL.

10.Exploring Cross-Image Pixel Contrast for Semantic Segmentation ⬇️

Current semantic segmentation methods focus only on mining "local" context, i.e., dependencies between pixels within individual images, by context-aggregation modules (e.g., dilated convolution, neural attention) or structure-aware optimization criteria (e.g., IoU-like loss). However, they ignore "global" context of the training data, i.e., rich semantic relations between pixels across different images. Inspired by the recent advance in unsupervised contrastive representation learning, we propose a pixel-wise contrastive framework for semantic segmentation in the fully supervised setting. The core idea is to enforce pixel embeddings belonging to a same semantic class to be more similar than embeddings from different classes. It raises a pixel-wise metric learning paradigm for semantic segmentation, by explicitly exploring the structures of labeled pixels, which are long ignored in the field. Our method can be effortlessly incorporated into existing segmentation frameworks without extra overhead during testing. We experimentally show that, with famous segmentation models (i.e., DeepLabV3, HRNet, OCR) and backbones (i.e., ResNet, HR-Net), our method brings consistent performance improvements across diverse datasets (i.e., Cityscapes, PASCAL-Context, COCO-Stuff). We expect this work will encourage our community to rethink the current de facto training paradigm in fully supervised semantic segmentation.

11.COMPAS: Representation Learning with Compositional Part Sharing for Few-Shot Classification ⬇️

Few-shot image classification consists of two consecutive learning processes: 1) In the meta-learning stage, the model acquires a knowledge base from a set of training classes. 2) During meta-testing, the acquired knowledge is used to recognize unseen classes from very few examples. Inspired by the compositional representation of objects in humans, we train a neural network architecture that explicitly represents objects as a set of parts and their spatial composition. In particular, during meta-learning, we train a knowledge base that consists of a dictionary of part representations and a dictionary of part activation maps that encode frequent spatial activation patterns of parts. The elements of both dictionaries are shared among the training classes. During meta-testing, the representation of unseen classes is learned using the part representations and the part activation maps from the knowledge base. Finally, an attention mechanism is used to strengthen those parts that are most important for each category. We demonstrate the value of our compositional learning framework for a few-shot classification using miniImageNet, tieredImageNet, CIFAR-FS, and FC100, where we achieve state-of-the-art performance.

12.Reducing ReLU Count for Privacy-Preserving CNN Speedup ⬇️

Privacy-Preserving Machine Learning algorithms must balance classification accuracy with data privacy. This can be done using a combination of cryptographic and machine learning tools such as Convolutional Neural Networks (CNN). CNNs typically consist of two types of operations: a convolutional or linear layer, followed by a non-linear function such as ReLU. Each of these types can be implemented efficiently using a different cryptographic tool. But these tools require different representations and switching between them is time-consuming and expensive. Recent research suggests that ReLU is responsible for most of the communication bandwidth. ReLU is usually applied at each pixel (or activation) location, which is quite expensive. We propose to share ReLU operations. Specifically, the ReLU decision of one activation can be used by others, and we explore different ways to group activations and different ways to determine the ReLU for such a group of activations. Experiments on several datasets reveal that we can cut the number of ReLU operations by up to three orders of magnitude and, as a result, cut the communication bandwidth by more than 50%.

13.Neural Architecture Search with Random Labels ⬇️

In this paper, we investigate a new variant of neural architecture search (NAS) paradigm -- searching with random labels (RLNAS). The task sounds counter-intuitive for most existing NAS algorithms since random label provides few information on the performance of each candidate architecture. Instead, we propose a novel NAS framework based on ease-of-convergence hypothesis, which requires only random labels during searching. The algorithm involves two steps: first, we train a SuperNet using random labels; second, from the SuperNet we extract the sub-network whose weights change most significantly during the training. Extensive experiments are evaluated on multiple datasets (e.g. NAS-Bench-201 and ImageNet) and multiple search spaces (e.g. DARTS-like and MobileNet-like). Very surprisingly, RLNAS achieves comparable or even better results compared with state-of-the-art NAS methods such as PC-DARTS, Single Path One-Shot, even though the counterparts utilize full ground truth labels for searching. We hope our finding could inspire new understandings on the essential of NAS.

14.DOC2PPT: Automatic Presentation Slides Generation from Scientific Documents ⬇️

Creating presentation materials requires complex multimodal reasoning skills to summarize key concepts and arrange them in a logical and visually pleasing manner. Can machines learn to emulate this laborious process? We present a novel task and approach for document-to-slide generation. Solving this involves document summarization, image and text retrieval, slide structure, and layout prediction to arrange key elements in a form suitable for presentation. We propose a hierarchical sequence-to-sequence approach to tackle our task in an end-to-end manner. Our approach exploits the inherent structures within documents and slides and incorporates paraphrasing and layout prediction modules to generate slides. To help accelerate research in this domain, we release a dataset about 6K paired documents and slide decks used in our experiments. We show that our approach outperforms strong baselines and produces slides with rich content and aligned imagery.

15.Augmenting Proposals by the Detector Itself ⬇️

Lacking enough high quality proposals for RoI box head has impeded two-stage and multi-stage object detectors for a long time, and many previous works try to solve it via improving RPN's performance or manually generating proposals from ground truth. However, these methods either need huge training and inference costs or bring little improvements. In this paper, we design a novel training method named APDI, which means augmenting proposals by the detector itself and can generate proposals with higher quality. Furthermore, APDI makes it possible to integrate IoU head into RoI box head. And it does not add any hyperparameter, which is beneficial for future research and downstream tasks. Extensive experiments on COCO dataset show that our method brings at least 2.7 AP improvements on Faster R-CNN with various backbones, and APDI can cooperate with advanced RPNs, such as GA-RPN and Cascade RPN, to obtain extra gains. Furthermore, it brings significant improvements on Cascade R-CNN.

16.Object Detection Made Simpler by Eliminating Heuristic NMS ⬇️

We show a simple NMS-free, end-to-end object detection framework, of which the network is a minimal modification to a one-stage object detector such as the FCOS detection model [Tian et al. 2019]. We attain on par or even improved detection accuracy compared with the original one-stage detector. It performs detection at almost the same inference speed, while being even simpler in that now the post-processing NMS (non-maximum suppression) is eliminated during inference. If the network is capable of identifying only one positive sample for prediction for each ground-truth object instance in an image, then NMS would become unnecessary. This is made possible by attaching a compact PSS head for automatic selection of the single positive sample for each instance (see Fig. 1). As the learning objective involves both one-to-many and one-to-one label assignments, there is a conflict in the labels of some training examples, making the learning challenging. We show that by employing a stop-gradient operation, we can successfully tackle this issue and train the detector. On the COCO dataset, our simple design achieves superior performance compared to both the FCOS baseline detector with NMS post-processing and the recent end-to-end NMS-free detectors. Our extensive ablation studies justify the rationale of the design choices.

17.Assessing the applicability of Deep Learning-based visible-infrared fusion methods for fire imagery ⬇️

Early wildfire detection is of paramount importance to avoid as much damage as possible to the environment, properties, and lives. Deep Learning (DL) models that can leverage both visible and infrared information have the potential to display state-of-the-art performance, with lower false-positive rates than existing techniques. However, most DL-based image fusion methods have not been evaluated in the domain of fire imagery. Additionally, to the best of our knowledge, no publicly available dataset contains visible-infrared fused fire images. There is a growing interest in DL-based image fusion techniques due to their reduced complexity. Due to the latter, we select three state-of-the-art, DL-based image fusion techniques and evaluate them for the specific task of fire image fusion. We compare the performance of these methods on selected metrics. Finally, we also present an extension to one of the said methods, that we called FIRe-GAN, that improves the generation of artificial infrared images and fused ones on selected metrics.

18.Multi-Modal Aesthetic Assessment for MObile Gaming Image ⬇️

With the proliferation of various gaming technology, services, game styles, and platforms, multi-dimensional aesthetic assessment of the gaming contents is becoming more and more important for the gaming industry. Depending on the diverse needs of diversified game players, game designers, graphical developers, etc. in particular conditions, multi-modal aesthetic assessment is required to consider different aesthetic dimensions/perspectives. Since there are different underlying relationships between different aesthetic dimensions, e.g., between the Colorfulness' and Color Harmony', it could be advantageous to leverage effective information attached in multiple relevant dimensions. To this end, we solve this problem via multi-task learning. Our inclination is to seek and learn the correlations between different aesthetic relevant dimensions to further boost the generalization performance in predicting all the aesthetic dimensions. Therefore, the `bottleneck' of obtaining good predictions with limited labeled data for one individual dimension could be unplugged by harnessing complementary sources of other dimensions, i.e., augment the training data indirectly by sharing training information across dimensions. According to experimental results, the proposed model outperforms state-of-the-art aesthetic metrics significantly in predicting four gaming aesthetic dimensions.

19.CNN with large memory layers ⬇️

This work is centred around the recently proposed product key memory structure \cite{large_memory}, implemented for a number of computer vision applications. The memory structure can be regarded as a simple computation primitive suitable to be augmented to nearly all neural network architectures. The memory block allows implementing sparse access to memory with square root complexity scaling with respect to the memory capacity. The latter scaling is possible due to the incorporation of Cartesian product space decomposition of the key space for the nearest neighbour search. We have tested the memory layer on the classification, image reconstruction and relocalization problems and found that for some of those, the memory layers can provide significant speed/accuracy improvement with the high utilization of the key-value elements, while others require more careful fine-tuning and suffer from dying keys. To tackle the later problem we have introduced a simple technique of memory re-initialization which helps us to eliminate unused key-value pairs from the memory and engage them in training again. We have conducted various experiments and got improvements in speed and accuracy for classification and PoseNet relocalization models.
We showed that the re-initialization has a huge impact on a toy example of randomly labeled data and observed some gains in performance on the image classification task. We have also demonstrated the generalization property perseverance of the large memory layers on the relocalization problem, while observing the spatial correlations between the images and the selected memory cells.

20.HDIB1M -- Handwritten Document Image Binarization 1 Million Dataset ⬇️

Handwritten document image binarization is a challenging task due to high diversity in the content, page style, and condition of the documents. While the traditional thresholding methods fail to generalize on such challenging scenarios, deep learning based methods can generalize well however, require a large training data. Current datasets for handwritten document image binarization are limited in size and fail to represent several challenging real-world scenarios. To solve this problem, we propose HDIB1M - a handwritten document image binarization dataset of 1M images. We also present a novel method used to generate this dataset. To show the effectiveness of our dataset we train a deep learning model UNetED on our dataset and evaluate its performance on other publicly available datasets. The dataset and the code will be made available to the community.

21.Self-Attention Meta-Learner for Continual Learning ⬇️

Continual learning aims to provide intelligent agents capable of learning multiple tasks sequentially with neural networks. One of its main challenging, catastrophic forgetting, is caused by the neural networks non-optimal ability to learn in non-stationary distributions. In most settings of the current approaches, the agent starts from randomly initialized parameters and is optimized to master the current task regardless of the usefulness of the learned representation for future tasks. Moreover, each of the future tasks uses all the previously learned knowledge although parts of this knowledge might not be helpful for its learning. These cause interference among tasks, especially when the data of previous tasks is not accessible. In this paper, we propose a new method, named Self-Attention Meta-Learner (SAM), which learns a prior knowledge for continual learning that permits learning a sequence of tasks, while avoiding catastrophic forgetting. SAM incorporates an attention mechanism that learns to select the particular relevant representation for each future task. Each task builds a specific representation branch on top of the selected knowledge, avoiding the interference between tasks. We evaluate the proposed method on the Split CIFAR-10/100 and Split MNIST benchmarks in the task agnostic inference. We empirically show that we can achieve a better performance than several state-of-the-art methods for continual learning by building on the top of selected representation learned by SAM. We also show the role of the meta-attention mechanism in boosting informative features corresponding to the input data and identifying the correct target in the task agnostic inference. Finally, we demonstrate that popular existing continual learning methods gain a performance boost when they adopt SAM as a starting point.

22.Generalising via Meta-Examples for Continual Learning in the Wild ⬇️

Learning quickly and continually is still an ambitious task for neural networks. Indeed, many real-world applications do not reflect the learning setting where neural networks shine, as data are usually few, mostly unlabelled and come as a stream. To narrow this gap, we introduce FUSION - Few-shot UnSupervIsed cONtinual learning - a novel strategy which aims to deal with neural networks that "learn in the wild", simulating a real distribution and flow of unbalanced tasks. We equip FUSION with MEML - Meta-Example Meta-Learning - a new module that simultaneously alleviates catastrophic forgetting and favours the generalisation and future learning of new tasks. To encourage features reuse during the meta-optimisation, our model exploits a single inner loop per task, taking advantage of an aggregated representation achieved through the use of a self-attention mechanism. To further enhance the generalisation capability of MEML, we extend it by adopting a technique that creates various augmented tasks and optimises over the hardest. Experimental results on few-shot learning benchmarks show that our model exceeds the other baselines in both FUSION and fully supervised case. We also explore how it behaves in standard continual learning consistently outperforming state-of-the-art approaches.

23.Uncertainty aware and explainable diagnosis of retinal disease ⬇️

Deep learning methods for ophthalmic diagnosis have shown considerable success in tasks like segmentation and classification. However, their widespread application is limited due to the models being opaque and vulnerable to making a wrong decision in complicated cases. Explainability methods show the features that a system used to make prediction while uncertainty awareness is the ability of a system to highlight when it is not sure about the decision. This is one of the first studies using uncertainty and explanations for informed clinical decision making. We perform uncertainty analysis of a deep learning model for diagnosis of four retinal diseases - age-related macular degeneration (AMD), central serous retinopathy (CSR), diabetic retinopathy (DR), and macular hole (MH) using images from a publicly available (OCTID) dataset. Monte Carlo (MC) dropout is used at the test time to generate a distribution of parameters and the predictions approximate the predictive posterior of a Bayesian model. A threshold is computed using the distribution and uncertain cases can be referred to the ophthalmologist thus avoiding an erroneous diagnosis. The features learned by the model are visualized using a proven attribution method from a previous study. The effects of uncertainty on model performance and the relationship between uncertainty and explainability are discussed in terms of clinical significance. The uncertainty information along with the heatmaps make the system more trustworthy for use in clinical settings.

24.Modeling Spatial Nonstationarity via Deformable Convolutions for Deep Traffic Flow Prediction ⬇️

Deep neural networks are being increasingly used for short-term traffic flow prediction. Existing convolution-based approaches typically partition an underlying territory into grid-like spatial units, and employ standard convolutions to learn spatial dependence among the units. However, standard convolutions with fixed geometric structures cannot fully model the nonstationary characteristics of local traffic flows. To overcome the deficiency, we introduce deformable convolution that augments the spatial sampling locations with additional offsets, to enhance the modeling capability of spatial nonstationarity. On this basis, we design a deep deformable convolutional residual network, namely DeFlow-Net, that can effectively model global spatial dependence, local spatial nonstationarity, and temporal periodicity of traffic flows. Furthermore, to fit better with convolutions, we suggest to first aggregate traffic flows according to pre-conceived regions of interest, then dispose to sequentially organized raster images for network input. Extensive experiments on real-world traffic flows demonstrate that DeFlow-Net outperforms existing solutions using standard convolutions, and spatial partition by pre-conceived regions further enhances the performance. Finally, we demonstrate the advantage of DeFlow-Net in maintaining spatial autocorrelation, and reveal the impacts of partition shapes and scales on deep traffic flow prediction.

25.Neural Particle Image Velocimetry ⬇️

In the past decades, great progress has been made in the field of optical and particle-based measurement techniques for experimental analysis of fluid flows. Particle Image Velocimetry (PIV) technique is widely used to identify flow parameters from time-consecutive snapshots of particles injected into the fluid. The computation is performed as post-processing of the experimental data via proximity measure between particles in frames of reference. However, the post-processing step becomes problematic as the motility and density of the particles increases, since the data emerges in extreme rates and volumes. Moreover, existing algorithms for PIV either provide sparse estimations of the flow or require large computational time frame preventing from on-line use. The goal of this manuscript is therefore to develop an accurate on-line algorithm for estimation of the fine-grained velocity field from PIV data. As the data constitutes a pair of images, we employ computer vision methods to solve the problem. In this work, we introduce a convolutional neural network adapted to the problem, namely Volumetric Correspondence Network (VCN) which was recently proposed for the end-to-end optical flow estimation in computer vision. The network is thoroughly trained and tested on a dataset containing both synthetic and real flow data. Experimental results are analyzed and compared to that of conventional methods as well as other recently introduced methods based on neural networks. Our analysis indicates that the proposed approach provides improved efficiency also keeping accuracy on par with other state-of-the-art methods in the field. We also verify through a-posteriori tests that our newly constructed VCN schemes are reproducing well physically relevant statistics of velocity and velocity gradients.

26.An Explainable AI System for Automated COVID-19 Assessment and Lesion Categorization from CT-scans ⬇️

COVID-19 infection caused by SARS-CoV-2 pathogen is a catastrophic pandemic outbreak all over the world with exponential increasing of confirmed cases and, unfortunately, deaths. In this work we propose an AI-powered pipeline, based on the deep-learning paradigm, for automated COVID-19 detection and lesion categorization from CT scans. We first propose a new segmentation module aimed at identifying automatically lung parenchyma and lobes. Next, we combined such segmentation network with classification networks for COVID-19 identification and lesion categorization. We compare the obtained classification results with those obtained by three expert radiologists on a dataset consisting of 162 CT scans. Results showed a sensitivity of 90% and a specificity of 93.5% for COVID-19 detection, outperforming those yielded by the expert radiologists, and an average lesion categorization accuracy of over 84%. Results also show that a significant role is played by prior lung and lobe segmentation that allowed us to enhance performance by over 20 percent points. The interpretation of the trained AI models, moreover, reveals that the most significant areas for supporting the decision on COVID-19 identification are consistent with the lesions clinically associated to the virus, i.e., crazy paving, consolidation and ground glass. This means that the artificial models are able to discriminate a positive patient from a negative one (both controls and patients with interstitial pneumonia tested negative to COVID) by evaluating the presence of those lesions into CT scans. Finally, the AI models are integrated into a user-friendly GUI to support AI explainability for radiologists, which is publicly available at this http URL.

27.The Role of Syntactic Planning in Compositional Image Captioning ⬇️

Image captioning has focused on generalizing to images drawn from the same distribution as the training set, and not to the more challenging problem of generalizing to different distributions of images. Recently, Nikolaus et al. (2019) introduced a dataset to assess compositional generalization in image captioning, where models are evaluated on their ability to describe images with unseen adjective-noun and noun-verb compositions. In this work, we investigate different methods to improve compositional generalization by planning the syntactic structure of a caption. Our experiments show that jointly modeling tokens and syntactic tags enhances generalization in both RNN- and Transformer-based models, while also improving performance on standard metrics.

28.Self-supervised Cross-silo Federated Neural Architecture Search ⬇️

Federated Learning (FL) provides both model performance and data privacy for machine learning tasks where samples or features are distributed among different parties. In the training process of FL, no party has a global view of data distributions or model architectures of other parties. Thus the manually-designed architectures may not be optimal. In the past, Neural Architecture Search (NAS) has been applied to FL to address this critical issue. However, existing Federated NAS approaches require prohibitive communication and computation effort, as well as the availability of high-quality labels. In this work, we present Self-supervised Vertical Federated Neural Architecture Search (SS-VFNAS) for automating FL where participants hold feature-partitioned data, a common cross-silo scenario called Vertical Federated Learning (VFL). In the proposed framework, each party first conducts NAS using self-supervised approach to find a local optimal architecture with its own data. Then, parties collaboratively improve the local optimal architecture in a VFL framework with supervision. We demonstrate experimentally that our approach has superior performance, communication efficiency and privacy compared to Federated NAS and is capable of generating high-performance and highly-transferable heterogeneous architectures even with insufficient overlapping samples, providing automation for those parties without deep learning expertise.

29.The Hidden Tasks of Generative Adversarial Networks: An Alternative Perspective on GAN Training ⬇️

We present an alternative perspective on the training of generative adversarial networks (GANs), showing that the training step for a GAN generator decomposes into two implicit sub-problems. In the first, the discriminator provides new target data to the generator in the form of "inverse examples" produced by approximately inverting classifier labels. In the second, these examples are used as targets to update the generator via least-squares regression, regardless of the main loss specified to train the network. We experimentally validate our main theoretical result and discuss implications for alternative training methods that are made possible by making these sub-problems explicit. We also introduce a simple representation of inductive bias in networks, which we apply to describing the generator's output relative to its regression targets.

30.SwingBot: Learning Physical Features from In-hand Tactile Exploration for Dynamic Swing-up Manipulation ⬇️

Several robot manipulation tasks are extremely sensitive to variations of the physical properties of the manipulated objects. One such task is manipulating objects by using gravity or arm accelerations, increasing the importance of mass, center of mass, and friction information. We present SwingBot, a robot that is able to learn the physical features of a held object through tactile exploration. Two exploration actions (tilting and shaking) provide the tactile information used to create a physical feature embedding space. With this embedding, SwingBot is able to predict the swing angle achieved by a robot performing dynamic swing-up manipulations on a previously unseen object. Using these predictions, it is able to search for the optimal control parameters for a desired swing-up angle. We show that with the learned physical features our end-to-end self-supervised learning pipeline is able to substantially improve the accuracy of swinging up unseen objects. We also show that objects with similar dynamics are closer to each other on the embedding space and that the embedding can be disentangled into values of specific physical properties.

31.Chronological age estimation of lateral cephalometric radiographs with deep learning ⬇️

The traditional manual age estimation method is crucial labor based on many kinds of the X-Ray image. Some current studies have shown that lateral cephalometric(LC) images can be used to estimate age. However, these methods are based on manually measuring some image features and making age estimates based on experience or scoring. Therefore, these methods are time-consuming and labor-intensive, and the effect will be affected by subjective opinions. In this work, we propose a saliency map-enhanced age estimation method, which can automatically perform age estimation based on LC images. Meanwhile, it can also show the importance of each region in the image for age estimation, which undoubtedly increases the method's Interpretability. Our method was tested on 3014 LC images from 4 to 40 years old. The MEA of the experimental result is 1.250, which is less than the result of the state-of-the-art benchmark because it performs significantly better in the age group with fewer data. Besides, our model is trained in each area with a high contribution to age estimation in LC images, so the effect of these different areas on the age estimation task was verified. Consequently, we conclude that the proposed saliency map enhancements chronological age estimation method of lateral cephalometric radiographs can work well in chronological age estimation task, especially when the amount of data is small. Besides, compared with traditional deep learning, our method is also interpretable.

32.Automated femur segmentation from computed tomography images using a deep neural network ⬇️

Osteoporosis is a common bone disease that occurs when the creation of new bone does not keep up with the loss of old bone, resulting in increased fracture risk. Adults over the age of 50 are especially at risk and see their quality of life diminished because of limited mobility, which can lead to isolation and depression. We are developing a robust screening method capable of identifying individuals predisposed to hip fracture to address this clinical challenge. The method uses finite element analysis and relies on segmented computed tomography (CT) images of the hip. Presently, the segmentation of the proximal femur requires manual input, which is a tedious task, prone to human error, and severely limits the practicality of the method in a clinical context. Here we present a novel approach for segmenting the proximal femur that uses a deep convolutional neural network to produce accurate, automated, robust, and fast segmentations of the femur from CT scans. The network architecture is based on the renowned u-net, which consists of a downsampling path to extract increasingly complex features of the input patch and an upsampling path to convert the acquired low resolution image into a high resolution one. Skipped connections allow us to recover critical spatial information lost during downsampling. The model was trained on 30 manually segmented CT images and was evaluated on 200 ground truth manual segmentations. Our method delivers a mean Dice similarity coefficient (DSC) and 95th percentile Hausdorff distance (HD95) of 0.990 and 0.981 mm, respectively.

33.A Multi-Scale Conditional Deep Model for Tumor Cell Ratio Counting ⬇️

We propose a method to accurately obtain the ratio of tumor cells over an entire histological slide. We use deep fully convolutional neural network models trained to detect and classify cells on images of H&E-stained tissue sections. Pathologists' labels consisting of exhaustive nuclei locations and tumor regions were used to trained the model in a supervised fashion. We show that combining two models, each working at a different magnification allows the system to capture both cell-level details and surrounding context to enable successful detection and classification of cells as either tumor-cell or normal-cell. Indeed, by conditioning the classification of a single cell on a multi-scale context information, our models mimic the process used by pathologists who assess cell neoplasticity and tumor extent at different microscope magnifications. The ratio of tumor cells can then be readily obtained by counting the number of cells in each class. To analyze an entire slide, we split it into multiple tiles that can be processed in parallel. The overall tumor cell ratio can then be aggregated. We perform experiments on a dataset of 100 slides with lung tumor specimens from both resection and tissue micro-array (TMA). We train fully-convolutional models using heavy data augmentation and batch normalization. On an unseen test set, we obtain an average mean absolute error on predicting the tumor cell ratio of less than 6%, which is significantly better than the human average of 20% and is key in properly selecting tissue samples for recent genetic panel tests geared at prescribing targeted cancer drugs. We perform ablation studies to show the importance of training two models at different magnifications and to justify the choice of some parameters, such as the size of the receptive field.

34.A new solution to the curved Ewald sphere problem for 3D image reconstruction in electron microscopy ⬇️

We develop an algorithm capable of reconstructing 3D images of an object given a collection of two-dimensional images that are significantly influenced by the curvature of the Ewald sphere. These 2D images are not projections. Such an algorithm is useful in cryo-electron microscopy where larger samples, higher resolution, or lower energy electron beams are desired.

35.Easy-GT: Open-Source Software to Facilitate Making the Ground Truth for White Blood Cells Nucleus ⬇️

The nucleus of white blood cells (WBCs) plays a significant role in their detection and classification. Appropriate feature extraction of the nucleus is necessary to fit a suitable artificial intelligence model to classify WBCs. Therefore, designing a method is needed to segment the nucleus accurately. The detected nuclei should be compared with the ground truths identified by a hematologist to obtain a proper performance evaluation of the nucleus segmentation method. It is a time-consuming and tedious task for experts to establish the ground truth manually. This paper presents an intelligent open-source software called Easy-GT to create the ground truth of WBCs nucleus faster and easier. This software first detects the nucleus by employing a new otsus thresholding based method with a dice similarity coefficient (DSC) of 95.42 %; the hematologist can then create a more accurate ground truth, using the designed buttons to modify the threshold value. This software can speed up ground truths forming process more than six times.