Skip to content
master
Go to file
Code

Latest commit

 

Git stats

Files

Permalink
Failed to load latest commit information.
Type
Name
Latest commit message
Commit time
 
 
 
 
 
 
 
 
 
 
 
 

README.md

Answer Embedding

Code Release for Learning Answer Embeddings for Visual Question Answering. (CVPR 2018)

Usage

usage: train_v7w_embedding.py [-h] [--gpu_id GPU_ID] [--batch_size BATCH_SIZE]
                              [--max_negative_answer MAX_NEGATIVE_ANSWER]
                              [--answer_batch_size ANSWER_BATCH_SIZE]
                              [--loss_temperature LOSS_TEMPERATURE]
                              [--pretrained_model PRETRAINED_MODEL]
                              [--context_embedding {SAN,BoW}]
                              [--answer_embedding {BoW,RNN}] [--name NAME]

optional arguments:
  -h, --help            show this help message and exit
  --gpu_id GPU_ID
  --batch_size BATCH_SIZE
  --max_negative_answer MAX_NEGATIVE_ANSWER
  --answer_batch_size ANSWER_BATCH_SIZE
  --loss_temperature LOSS_TEMPERATURE
  --pretrained_model PRETRAINED_MODEL
  --context_embedding {SAN,BoW}
  --answer_embedding {BoW,RNN}
  --name NAME

Bibtex

Please cite with the following bibtex if you are using any related resource of this repo for your research.

@inproceedings{hu2018learning,
  title={Learning Answer Embeddings for Visual Question Answering},
  author={Hu, Hexiang and Chao, Wei-Lun and Sha, Fei},
  booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
  pages={5428--5436},
  year={2018}
}

Acknowledgement

Part of this code uses components from pytorch-vqa and torchtext. We thank authors for releasing their code.

References

  1. Being Negative but Constructively: Lessons Learnt from Creating Better Visual Question Answering Datasets (qaVG website)
  2. Visual7W: Grounded Question Answering in Images (website)
  3. Making the V in VQA Matter: Elevating the Role of Image Understanding in Visual Question Answering website

About

Code Release for `Learning Answer Embeddings for Visual Question Answering`. (CVPR 2018)

Resources

License

Releases

No releases published

Packages

No packages published
You can’t perform that action at this time.