Farzan Memarian*, Wonjoon Goo*, Rudolf Lioutikov, Scott Niekum, and Ufuk Tocpu (* equal contribution)
This repository contains a code used to conduct experiments reported in the paper.
mujoco200
conda
- Remember to add the mujoco directory to
LD_LIBRARY_PATH
environment variable. - All the other dependencies will be handled in the following installation script via conda.
git clone https://github.com/hiwonjoon/IROS2021_SORS.git
cd IROS2021_SORS
conda env create --file env.yaml --name sors
conda activate sors
# in the case of error during creation, use conda update commands:
# conda env update --file env.yaml
python -m SORS.scripts.sors --seed {seed} --log_dir ./log/directory/you/want --config_file ./SORS/experiments/sors.gin ./SORS/experiments/envs/delayed_{env_name}.gin # SORS
python -m SORS.scripts.offpolicy_rl --seed {seed} --log_dir ./log/directory/you/want --config_file ./SORS/experiments/sac.gin ./SORS/experiments/envs/delayed_{env_name}.gin # sac baseline
python -m SORS.scripts.offpolicy_rl --seed {seed} --log_dir ./log/directory/you/want --config_file ./SORS/experiments/sac.gin ./SORS/experiments/envs/{env_name}.gin # sac baseline with gt reward
You can check the results on tensorboard
.
tensorboard --logdir ./log
If you find this repository is useful in your research, please cite the paper:
@inproceedings{Memarian2021SORS,
author = {Farzan Memarian and Wonjoon Goo and Rudolf Lioutikov and Scott Niekum and and Ufuk Tocpu},
booktitle = {IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)},
title = {Self-Supervised Online Reward Shaping in Sparse-Reward Environments},
year = {2021}
}
- Mujoco-py related problems: reinstall
mujoco-py
pip uninstall mujoco-py
pip install mujoco-py==2.0.2.13 --no-cache-dir --no-binary :all: --no-build-isolation