Skip to content

Commit

Permalink
llama : add support for control vectors (ggerganov#5970)
Browse files Browse the repository at this point in the history
* control vector api and implementation

* control-vectors : minor code style updates

* disable control vector when data == nullptr

use -1 for disabled range (also on init) in case we ever support controlling layer 0 (embeddings)

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
  • Loading branch information
2 people authored and hodlen committed Apr 3, 2024
1 parent b84812a commit bd209bf
Show file tree
Hide file tree
Showing 4 changed files with 392 additions and 5 deletions.
215 changes: 215 additions & 0 deletions common/common.cpp
Expand Up @@ -568,6 +568,34 @@ bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) {
break;
}
params.lora_base = argv[i];
} else if (arg == "--control-vector") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.control_vectors.push_back({ 1.0f, argv[i], });
} else if (arg == "--control-vector-scaled") {
if (++i >= argc) {
invalid_param = true;
break;
}
const char * fname = argv[i];
if (++i >= argc) {
invalid_param = true;
break;
}
params.control_vectors.push_back({ std::stof(argv[i]), fname, });
} else if (arg == "--control-vector-layer-range") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.control_vector_layer_start = std::stoi(argv[i]);
if (++i >= argc) {
invalid_param = true;
break;
}
params.control_vector_layer_end = std::stoi(argv[i]);
} else if (arg == "--mmproj") {
if (++i >= argc) {
invalid_param = true;
Expand Down Expand Up @@ -1095,6 +1123,12 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
printf(" --lora FNAME apply LoRA adapter (implies --no-mmap)\n");
printf(" --lora-scaled FNAME S apply LoRA adapter with user defined scaling S (implies --no-mmap)\n");
printf(" --lora-base FNAME optional model to use as a base for the layers modified by the LoRA adapter\n");
printf(" --control-vector FNAME\n");
printf(" add a control vector\n");
printf(" --control-vector-scaled FNAME S\n");
printf(" add a control vector with user defined scaling S\n");
printf(" --control-vector-layer-range START END\n");
printf(" layer range to apply the control vector(s) to, start and end inclusive\n");
printf(" -m FNAME, --model FNAME\n");
printf(" model path (default: %s)\n", params.model.c_str());
printf(" -md FNAME, --model-draft FNAME\n");
Expand Down Expand Up @@ -1360,6 +1394,30 @@ std::tuple<struct llama_model *, struct llama_context *> llama_init_from_gpt_par
return std::make_tuple(nullptr, nullptr);
}

if (!params.control_vectors.empty()) {
if (params.control_vector_layer_start <= 0) params.control_vector_layer_start = 1;
if (params.control_vector_layer_end <= 0) params.control_vector_layer_end = llama_n_layer(model);

const auto cvec = llama_control_vector_load(params.control_vectors);
if (cvec.n_embd == -1) {
llama_free(lctx);
llama_free_model(model);
return std::make_tuple(nullptr, nullptr);
}

int err = llama_control_vector_apply(lctx,
cvec.data.data(),
cvec.data.size(),
cvec.n_embd,
params.control_vector_layer_start,
params.control_vector_layer_end);
if (err) {
llama_free(lctx);
llama_free_model(model);
return std::make_tuple(nullptr, nullptr);
}
}

for (unsigned int i = 0; i < params.lora_adapter.size(); ++i) {
const std::string& lora_adapter = std::get<0>(params.lora_adapter[i]);
float lora_scale = std::get<1>(params.lora_adapter[i]);
Expand Down Expand Up @@ -1890,3 +1948,160 @@ float llama_embd_similarity_cos(const float * embd1, const float * embd2, int n)

return sum / (sqrt(sum1) * sqrt(sum2));
}

//
// Control vector utils
//

static llama_control_vector_data llama_control_vector_load_one(const llama_control_vector_load_info & load_info) {
int32_t n_tensors;

size_t n_bytes = 0;

uint32_t max_direction_layer = 0;

llama_control_vector_data result = { -1, {} };

// calculate size of ctx needed for tensors, ensure tensors are f32, and find max layer
{
struct ggml_init_params meta_params = {
/* .mem_size = */ ggml_tensor_overhead() * 128 + ggml_graph_overhead(),
/* .mem_buffer = */ nullptr,
/* .no_alloc = */ true,
};
ggml_context * meta_ctx = ggml_init(meta_params);
struct gguf_init_params meta_gguf_params = {
/* .no_alloc = */ true,
/* .ctx = */ &meta_ctx,
};
struct gguf_context * meta_ctx_gguf = gguf_init_from_file(load_info.fname.c_str(), meta_gguf_params);
if (!meta_ctx_gguf) {
fprintf(stderr, "%s: failed to load control vector from %s\n", __func__, load_info.fname.c_str());
ggml_free(meta_ctx);
return result;
}

n_tensors = gguf_get_n_tensors(meta_ctx_gguf);
for (int i = 0; i < n_tensors; i++) {
std::string name = gguf_get_tensor_name(meta_ctx_gguf, i);

// split on '.'
size_t dotpos = name.find('.');
if (dotpos != std::string::npos && name.substr(0, dotpos) == "direction") {
try {
uint32_t layer = std::stoi(name.substr(dotpos + 1));
if (layer == 0) {
fprintf(stderr, "%s: direction tensor invalid in %s\n", __func__, load_info.fname.c_str());
ggml_free(meta_ctx);
gguf_free(meta_ctx_gguf);
return result;
}
if (layer > max_direction_layer) {
max_direction_layer = layer;
}
} catch (...) {
fprintf(stderr, "%s: direction tensor invalid in %s\n", __func__, load_info.fname.c_str());
ggml_free(meta_ctx);
gguf_free(meta_ctx_gguf);
return result;
}
}

struct ggml_tensor * tensor_meta = ggml_get_tensor(meta_ctx, name.c_str());
if (tensor_meta->type != GGML_TYPE_F32 || ggml_n_dims(tensor_meta) != 1) {
fprintf(stderr, "%s: direction tensor invalid in %s\n", __func__, load_info.fname.c_str());
ggml_free(meta_ctx);
gguf_free(meta_ctx_gguf);
return result;
}
if (result.n_embd == -1) {
result.n_embd = ggml_nelements(tensor_meta);
} else if (ggml_nelements(tensor_meta) != result.n_embd) {
fprintf(stderr, "%s: direction tensor sizes mismatched in %s\n", __func__, load_info.fname.c_str());
ggml_free(meta_ctx);
gguf_free(meta_ctx_gguf);
return result;
}
n_bytes += ggml_nbytes(tensor_meta);
}
ggml_free(meta_ctx);
gguf_free(meta_ctx_gguf);
}

if (n_tensors == 0) {
fprintf(stderr, "%s: no direction tensors found in %s\n", __func__, load_info.fname.c_str());
return result;
}

// load and scale tensors into final control vector context
struct ggml_init_params ggml_params = {
/* .mem_size = */ ggml_tensor_overhead() * n_tensors + n_bytes,
/* .mem_buffer = */ nullptr,
/* .no_alloc = */ false,
};
struct ggml_context * ctx = ggml_init(ggml_params);

struct gguf_init_params params = {
/*.no_alloc = */ false,
/*.ctx = */ &ctx,
};
struct gguf_context * ctx_gguf = gguf_init_from_file(load_info.fname.c_str(), params);
if (!ctx_gguf) {
fprintf(stderr, "%s: failed to load control vector from %s\n", __func__, load_info.fname.c_str());
ggml_free(ctx);
return result;
}

// do not store data for layer 0 (it's not used)
result.data.resize(result.n_embd * max_direction_layer);

for (uint32_t il = 1; il <= max_direction_layer; il++) {
const std::string name = "direction." + std::to_string(il);
const ggml_tensor * tensor = ggml_get_tensor(ctx, name.c_str());

float * dst = result.data.data() + result.n_embd * (il - 1);

if (tensor) {
const float * src = (const float *) tensor->data;
for (int j = 0; j < result.n_embd; j++) {
dst[j] = src[j] * load_info.strength;
}
} else {
for (int j = 0; j < result.n_embd; j++) {
dst[j] = 0.0f;
}
}
}

return result;
}

llama_control_vector_data llama_control_vector_load(const std::vector<llama_control_vector_load_info> & load_infos) {
llama_control_vector_data result = { -1, {} };

for (const auto & info : load_infos) {
auto cur = llama_control_vector_load_one(info);

if (cur.n_embd == -1) {
return result;
}
if (result.n_embd != -1 && (result.n_embd != cur.n_embd || result.data.size() != cur.data.size())) {
fprintf(stderr, "%s: control vector in %s does not match previous vector dimensions\n", __func__, info.fname.c_str());
return result;
}

if (result.n_embd == -1) {
result = std::move(cur);
} else {
for (size_t i = 0; i < cur.data.size(); i++) {
result.data[i] += cur.data[i];
}
}
}

if (result.n_embd == -1) {
fprintf(stderr, "%s: no vectors passed\n", __func__);
}

return result;
}
31 changes: 30 additions & 1 deletion common/common.h
Expand Up @@ -37,10 +37,13 @@ extern char const *LLAMA_COMMIT;
extern char const *LLAMA_COMPILER;
extern char const *LLAMA_BUILD_TARGET;

struct llama_control_vector_load_info;

int32_t get_num_physical_cores();

//
// CLI argument parsing
//
int32_t get_num_physical_cores();

struct gpt_params {
uint32_t seed = LLAMA_DEFAULT_SEED; // RNG seed
Expand Down Expand Up @@ -103,6 +106,11 @@ struct gpt_params {
std::vector<std::tuple<std::string, float>> lora_adapter; // lora adapter path with user defined scale
std::string lora_base = ""; // base model path for the lora adapter

std::vector<llama_control_vector_load_info> control_vectors; // control vector with user defined scale

int32_t control_vector_layer_start = -1; // layer range for control vector
int32_t control_vector_layer_end = -1; // layer range for control vector

int ppl_stride = 0; // stride for perplexity calculations. If left at 0, the pre-existing approach will be used.
int ppl_output_type = 0; // = 0 -> ppl output is as usual, = 1 -> ppl output is num_tokens, ppl, one per line
// (which is more convenient to use for plotting)
Expand Down Expand Up @@ -269,3 +277,24 @@ void dump_kv_cache_view_seqs(const llama_kv_cache_view & view, int row_size = 40
void llama_embd_normalize(const float * inp, float * out, int n);

float llama_embd_similarity_cos(const float * embd1, const float * embd2, int n);

//
// Control vector utils
//

struct llama_control_vector_data {
int n_embd;

// stores data for layers [1, n_layer] where n_layer = data.size() / n_embd
std::vector<float> data;
};

struct llama_control_vector_load_info {
float strength;

std::string fname;
};

// Load control vectors, scale each by strength, and add them together.
// On error, returns {-1, empty}
llama_control_vector_data llama_control_vector_load(const std::vector<llama_control_vector_load_info> & load_infos);

0 comments on commit bd209bf

Please sign in to comment.