Skip to content
PyTorch code for our paper : "SRM : A Style-based Recalibration Module for Convolutional Neural Networks" (https://arxiv.org/abs/1903.10829)
Python
Branch: master
Clone or download
Fetching latest commit…
Cannot retrieve the latest commit at this time.
Permalink
Type Name Latest commit message Commit time
Failed to load latest commit information.
figures
models
utils
.gitignore
README.md
imagenet.py

README.md

Style-Based Recalibration Module

The official PyTorch implementation of "SRM : A Style-based Recalibration Module for Convolutional Neural Networks" for ImageNet. SRM is a lightweight architectural unit that dynamically recalibrates feature responses based on style importance.

Overview of Results

Training and validation curves on ImageNet with ResNet-50

Top-1 and top-5 accuracy (%) on the ImageNet-1K validation set

Example results of style transfer

Prerequisites

  • PyTorch 0.4.0+
  • Python 3.6
  • CUDA 8.0+

Training Examples

  • Train ResNet-50
python imagenet.py --depth 50 --data /data/imagenet/ILSVRC2012 --gpu-id 0,1,2,3,4,5,6,7 --checkpoint resnet50/baseline
  • Train SRM-ResNet-50
python imagenet.py --depth 50 --data /data/imagenet/ILSVRC2012 --gpu-id 0,1,2,3,4,5,6,7 --checkpoint resnet50/srm --recalibration-type srm
  • Train SE-ResNet-50
python imagenet.py --depth 50 --data /data/imagenet/ILSVRC2012 --gpu-id 0,1,2,3,4,5,6,7 --checkpoint resnet50/se --recalibration-type se
  • Train GE-ResNet-50
python imagenet.py --depth 50 --data /data/imagenet/ILSVRC2012 --gpu-id 0,1,2,3,4,5,6,7 --checkpoint resnet50/ge --recalibration-type ge

Acknowledgment

This code is heavily borrowed from pytorch-classification.

Note

  • 28/05/2019: initial code for ImageNet is released
You can’t perform that action at this time.