Skip to content

Commit

Permalink
Added reshapes for interpretable inputs in LimeBase. (WIP)
Browse files Browse the repository at this point in the history
  • Loading branch information
nfelnlp committed Jan 25, 2023
1 parent cb8b4c7 commit 3ee678f
Show file tree
Hide file tree
Showing 3 changed files with 324 additions and 47 deletions.
309 changes: 309 additions & 0 deletions inseq/attr/feat/ops/lime.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,309 @@
import inspect
import math
import warnings
from functools import partial
from typing import Any, Callable, Optional, cast

import torch
from captum._utils.common import (
_expand_additional_forward_args,
_expand_target,
)
from captum._utils.models.linear_model import SkLearnLinearModel
from captum._utils.models.model import Model
from captum._utils.progress import progress
from captum._utils.typing import (
TargetType,
TensorOrTupleOfTensorsGeneric,
)
from captum.attr import LimeBase
from torch import Tensor
from torch.utils.data import DataLoader, TensorDataset


class Lime(LimeBase):
def __init__(
self,
attribution_model: Callable,
interpretable_model: Model = None,
similarity_func: Callable = None,
perturb_func: Callable = None,
perturb_interpretable_space: bool = False,
from_interp_rep_transform: Optional[Callable] = None,
to_interp_rep_transform: Optional[Callable] = None,
) -> None:
if interpretable_model is None:
interpretable_model = SkLearnLinearModel("linear_model.Ridge")

if similarity_func is None:
similarity_func = self.token_similarity_kernel

if perturb_func is None:
perturb_func = partial(
self.perturb_func,
)

super().__init__(
forward_func=attribution_model,
interpretable_model=interpretable_model,
similarity_func=similarity_func,
perturb_func=perturb_func,
perturb_interpretable_space=perturb_interpretable_space,
from_interp_rep_transform=None,
to_interp_rep_transform=self.to_interp_rep_transform,
)
self.attribution_model = attribution_model
assert self.attribution_model.model.device is not None
assert self.attribution_model.tokenizer.pad_token_id is not None

# @log_usage
def attribute(
self,
inputs: TensorOrTupleOfTensorsGeneric,
target: TargetType = None,
additional_forward_args: Any = None,
n_samples: int = 50,
perturbations_per_eval: int = 1,
show_progress: bool = False,
**kwargs,
) -> Tensor:
r"""
This method attributes the output of the model with given target index
(in case it is provided, otherwise it assumes that output is a
scalar) to the inputs of the model using the approach described above.
It trains an interpretable model and returns a representation of the
interpretable model.
It is recommended to only provide a single example as input (tensors
with first dimension or batch size = 1). This is because LIME is generally
used for sample-based interpretability, training a separate interpretable
model to explain a model's prediction on each individual example.
A batch of inputs can be provided as inputs only if forward_func
returns a single value per batch (e.g. loss).
The interpretable feature representation should still have shape
1 x num_interp_features, corresponding to the interpretable
representation for the full batch, and perturbations_per_eval
must be set to 1.
Args:
inputs (tensor or tuple of tensors): Input for which LIME
is computed. If forward_func takes a single
tensor as input, a single input tensor should be provided.
If forward_func takes multiple tensors as input, a tuple
of the input tensors should be provided. It is assumed
that for all given input tensors, dimension 0 corresponds
to the number of examples, and if multiple input tensors
are provided, the examples must be aligned appropriately.
target (int, tuple, tensor or list, optional): Output indices for
which surrogate model is trained
(for classification cases,
this is usually the target class).
If the network returns a scalar value per example,
no target index is necessary.
For general 2D outputs, targets can be either:
- a single integer or a tensor containing a single
integer, which is applied to all input examples
- a list of integers or a 1D tensor, with length matching
the number of examples in inputs (dim 0). Each integer
is applied as the target for the corresponding example.
For outputs with > 2 dimensions, targets can be either:
- A single tuple, which contains #output_dims - 1
elements. This target index is applied to all examples.
- A list of tuples with length equal to the number of
examples in inputs (dim 0), and each tuple containing
#output_dims - 1 elements. Each tuple is applied as the
target for the corresponding example.
Default: None
additional_forward_args (any, optional): If the forward function
requires additional arguments other than the inputs for
which attributions should not be computed, this argument
can be provided. It must be either a single additional
argument of a Tensor or arbitrary (non-tuple) type or a
tuple containing multiple additional arguments including
tensors or any arbitrary python types. These arguments
are provided to forward_func in order following the
arguments in inputs.
For a tensor, the first dimension of the tensor must
correspond to the number of examples. For all other types,
the given argument is used for all forward evaluations.
Note that attributions are not computed with respect
to these arguments.
Default: None
n_samples (int, optional): The number of samples of the original
model used to train the surrogate interpretable model.
Default: `50` if `n_samples` is not provided.
perturbations_per_eval (int, optional): Allows multiple samples
to be processed simultaneously in one call to forward_fn.
Each forward pass will contain a maximum of
perturbations_per_eval * #examples samples.
For DataParallel models, each batch is split among the
available devices, so evaluations on each available
device contain at most
(perturbations_per_eval * #examples) / num_devices
samples.
If the forward function returns a single scalar per batch,
perturbations_per_eval must be set to 1.
Default: 1
show_progress (bool, optional): Displays the progress of computation.
It will try to use tqdm if available for advanced features
(e.g. time estimation). Otherwise, it will fallback to
a simple output of progress.
Default: False
**kwargs (Any, optional): Any additional arguments necessary for
sampling and transformation functions (provided to
constructor).
Default: None
Returns:
**interpretable model representation**:
- **interpretable model representation* (*Any*):
A representation of the interpretable model trained. The return
type matches the return type of train_interpretable_model_func.
For example, this could contain coefficients of a
linear surrogate model.
"""
with torch.no_grad():
inp_tensor = cast(Tensor, inputs) if isinstance(inputs, Tensor) else inputs[0]
device = inp_tensor.device

interpretable_inps = []
similarities = []
outputs = []

curr_model_inputs = []
expanded_additional_args = None
expanded_target = None
perturb_generator = None
if inspect.isgeneratorfunction(self.perturb_func):
perturb_generator = self.perturb_func(inputs, **kwargs)

if show_progress:
attr_progress = progress(
total=math.ceil(n_samples / perturbations_per_eval),
desc=f"{self.get_name()} attribution",
)
attr_progress.update(0)

batch_count = 0
for _ in range(n_samples):
if perturb_generator:
try:
curr_sample = next(perturb_generator)
except StopIteration:
warnings.warn("Generator completed prior to given n_samples iterations!")
break
else:
curr_sample = self.perturb_func(inputs, **kwargs)
batch_count += 1
if self.perturb_interpretable_space:
interpretable_inps.append(curr_sample)
curr_model_inputs.append(
self.from_interp_rep_transform(curr_sample, inputs, **kwargs) # type: ignore
)
else:
curr_model_inputs.append(curr_sample)
interpretable_inps.append(
self.to_interp_rep_transform(curr_sample, inputs, **kwargs) # type: ignore
)
curr_sim = self.similarity_func(inputs, curr_model_inputs[-1], interpretable_inps[-1], **kwargs)
similarities.append(
curr_sim.flatten() if isinstance(curr_sim, Tensor) else torch.tensor([curr_sim], device=device)
)

if len(curr_model_inputs) == perturbations_per_eval:
if expanded_additional_args is None:
expanded_additional_args = _expand_additional_forward_args(
additional_forward_args, len(curr_model_inputs)
)
if expanded_target is None:
expanded_target = _expand_target(target, len(curr_model_inputs))

model_out = self._evaluate_batch(
curr_model_inputs,
expanded_target,
expanded_additional_args,
device,
)

if show_progress:
attr_progress.update()

outputs.append(model_out)

curr_model_inputs = []

if len(curr_model_inputs) > 0:
expanded_additional_args = _expand_additional_forward_args(
additional_forward_args, len(curr_model_inputs)
)
expanded_target = _expand_target(target, len(curr_model_inputs))
model_out = self._evaluate_batch(
curr_model_inputs,
expanded_target,
expanded_additional_args,
device,
)
if show_progress:
attr_progress.update()
outputs.append(model_out)

if show_progress:
attr_progress.close()

""" Modification of original attribute function:
Squeeze the batch dimension out of interpretable_inps
-> 2D tensor (n_samples ✕ (input_dim * embedding_dim))
"""
combined_interp_inps = torch.cat([i.view(-1).unsqueeze(dim=0) for i in interpretable_inps]).double()

combined_outputs = (torch.cat(outputs) if len(outputs[0].shape) > 0 else torch.stack(outputs)).double()
combined_sim = (
torch.cat(similarities) if len(similarities[0].shape) > 0 else torch.stack(similarities)
).double()
dataset = TensorDataset(combined_interp_inps, combined_outputs, combined_sim)
self.interpretable_model.fit(DataLoader(dataset, batch_size=batch_count))

""" Second modification:
Reshape of the learned representation
-> 3D tensor (b=1 ✕ input_dim ✕ embedding_dim)
"""
return self.interpretable_model.representation().reshape(inp_tensor.shape)

@staticmethod
def token_similarity_kernel(
original_input: tuple,
perturbed_input: tuple,
perturbed_interpretable_input: torch.Tensor,
**kwargs,
) -> torch.Tensor:
original_input_tensor = original_input[0] # [0]
perturbed_input_tensor = perturbed_input[0]
assert original_input_tensor.shape == perturbed_input_tensor.shape
similarity = torch.sum(original_input_tensor == perturbed_input_tensor) / len(original_input_tensor)
return similarity

def perturb_func(
self,
original_input: tuple, # always needs to be last argument before **kwargs due to "partial"
**kwargs: Any,
) -> tuple:
"""
Sampling function
"""
original_input_tensor = original_input[0]
mask = torch.randint(low=0, high=2, size=original_input_tensor.size()).to(self.attribution_model.device)
perturbed_input = original_input_tensor * mask + (1 - mask) * self.attribution_model.tokenizer.pad_token_id
perturbed_input_tuple = tuple({perturbed_input})
return perturbed_input_tuple # [0][0] # FIXME

@staticmethod
def to_interp_rep_transform(sample, original_input, **kwargs: Any):
return sample[0] # [0] # FIXME: Access first entry of tuple
Loading

0 comments on commit 3ee678f

Please sign in to comment.