Skip to content

Commit

Permalink
bpf: Enable cpumasks to be queried and used as kptrs
Browse files Browse the repository at this point in the history
Certain programs may wish to be able to query cpumasks. For example, if
a program that is tracing percpu operations may wish to track which
tasks end up running on which CPUs, and it could be useful to associate
that with the tasks' cpumasks. Similarly, a program tracking NUMA
allocations, CPU scheduling domains, etc, would potentially benefit from
being able to see which CPUs a task could be migrated to, etc.

This patch enables these such cases by introducing a series of
bpf_cpumask_* kfuncs. Amongst these kfuncs, there are two separate
"classes" of operations:

1. kfuncs which allow the caller to allocate and mutate their own
   cpumasks in the form of a struct bpf_cpumask * object. Such kfuncs
   include e.g. bpf_cpumask_create() to allocate the cpumask, and
   bpf_cpumask_or() to mutate it. "Regular" cpumasks such as p->cpus_ptr
   may not be passed to these kfuncs, and the verifier will ensure this
   is the case by comparing BTF IDs.

2. Read-only operations which operate on const struct cpumask *
   arguments. For example, bpf_cpumask_test_cpu(), which tests whether a
   CPU is set in the cpumask. Any trusted struct cpumask * or struct
   bpf_cpumask * may be passed to these kfuncs. The verifier allows
   struct bpf_cpumask * even though the kfunc is defined with struct
   cpumask * because the first element of a struct bpf_cpumask is a
   cpumask_t, so it is safe to cast.

A follow-on patch will add selftests which validate these kfuncs, and
another will document them.

Note that some of the kfuncs that were added would benefit from
additional verification logic. For example, any kfunc taking a CPU
argument that exceeds the number of CPUs on the system, etc. For now, we
silently check for and ignore these cases at runtime. When we have e.g.
per-argument kfunc flags, it might be helpful to add another KF_CPU-type
flag that specifies that the verifier should validate that it's a valid
CPU.

Signed-off-by: David Vernet <void@manifault.com>
  • Loading branch information
Byte-Lab authored and intel-lab-lkp committed Jan 20, 2023
1 parent e9461d0 commit 1154120
Show file tree
Hide file tree
Showing 2 changed files with 264 additions and 0 deletions.
1 change: 1 addition & 0 deletions kernel/bpf/Makefile
Expand Up @@ -36,6 +36,7 @@ obj-$(CONFIG_DEBUG_INFO_BTF) += sysfs_btf.o
endif
ifeq ($(CONFIG_BPF_JIT),y)
obj-$(CONFIG_BPF_SYSCALL) += bpf_struct_ops.o
obj-$(CONFIG_BPF_SYSCALL) += cpumask.o
obj-${CONFIG_BPF_LSM} += bpf_lsm.o
endif
obj-$(CONFIG_BPF_PRELOAD) += preload/
Expand Down
263 changes: 263 additions & 0 deletions kernel/bpf/cpumask.c
@@ -0,0 +1,263 @@
// SPDX-License-Identifier: GPL-2.0-only
/* Copyright (c) 2023 Meta, Inc
*/
#include <linux/bpf.h>
#include <linux/bpf_mem_alloc.h>
#include <linux/btf.h>
#include <linux/btf_ids.h>
#include <linux/cpumask.h>

/**
* struct bpf_cpumask - refcounted BPF cpumask wrapper structure
* @cpumask: The actual cpumask embedded in the struct.
* @usage: Object reference counter. When the refcount goes to 0, the
* memory is released back to the BPF allocator, which provides
* RCU safety.
*
* Note that we explicitly embed a cpumask_t rather than a cpumask_var_t. This
* is done to avoid confusing the verifier due to the typedef of cpumask_var_t
* changing depending on whether CONFIG_CPUMASK_OFFSTACK is defined or not. See
* the details in <linux/cpumask.h>. The consequence is that this structure is
* likely a bit larger than it needs to be when CONFIG_CPUMASK_OFFSTACK is
* defined due to embedding the whole NR_CPUS-size bitmap, but the extra memory
* overhead it's minimal. For the more typical case of CONFIG_CPUMASK_OFFSTACK
* not being defined, the structure is the same size regardless.
*/
struct bpf_cpumask {
cpumask_t cpumask;
refcount_t usage;
};

static struct bpf_mem_alloc bpf_cpumask_ma;

static bool cpu_valid(u32 cpu)
{
return cpu < nr_cpu_ids;
}

struct bpf_cpumask *bpf_cpumask_create(void)
{
struct bpf_cpumask *cpumask;

cpumask = bpf_mem_alloc(&bpf_cpumask_ma, sizeof(*cpumask));
if (!cpumask)
return NULL;

memset(cpumask, 0, sizeof(*cpumask));
refcount_set(&cpumask->usage, 1);

return cpumask;
}

struct bpf_cpumask *bpf_cpumask_acquire(struct bpf_cpumask *cpumask)
{
refcount_inc(&cpumask->usage);
return cpumask;
}

struct bpf_cpumask *bpf_cpumask_kptr_get(struct bpf_cpumask **cpumaskp)
{
struct bpf_cpumask *cpumask;

/* The BPF memory allocator frees memory backing its caches in an RCU
* callback. Thus, we can safely use RCU to ensure that the cpumask is
* safe to read.
*/
rcu_read_lock();

cpumask = READ_ONCE(*cpumaskp);
if (cpumask && !refcount_inc_not_zero(&cpumask->usage))
cpumask = NULL;

rcu_read_unlock();
return cpumask;
}

void bpf_cpumask_release(struct bpf_cpumask *cpumask)
{
if (!cpumask)
return;

if (refcount_dec_and_test(&cpumask->usage)) {
migrate_disable();
bpf_mem_free(&bpf_cpumask_ma, cpumask);
migrate_enable();
}
}

u32 bpf_cpumask_first(const struct cpumask *cpumask)
{
return cpumask_first(cpumask);
}

u32 bpf_cpumask_first_zero(const struct cpumask *cpumask)
{
return cpumask_first_zero(cpumask);
}

void bpf_cpumask_set_cpu(u32 cpu, struct bpf_cpumask *cpumask)
{
if (!cpu_valid(cpu))
return;

cpumask_set_cpu(cpu, (struct cpumask *)cpumask);
}

void bpf_cpumask_clear_cpu(u32 cpu, struct bpf_cpumask *cpumask)
{
if (!cpu_valid(cpu))
return;

cpumask_clear_cpu(cpu, (struct cpumask *)cpumask);
}

bool bpf_cpumask_test_cpu(u32 cpu, const struct cpumask *cpumask)
{
if (!cpu_valid(cpu))
return false;

return cpumask_test_cpu(cpu, (struct cpumask *)cpumask);
}

bool bpf_cpumask_test_and_set_cpu(u32 cpu, struct bpf_cpumask *cpumask)
{
if (!cpu_valid(cpu))
return false;

return cpumask_test_and_set_cpu(cpu, (struct cpumask *)cpumask);
}

bool bpf_cpumask_test_and_clear_cpu(u32 cpu, struct bpf_cpumask *cpumask)
{
if (!cpu_valid(cpu))
return false;

return cpumask_test_and_clear_cpu(cpu, (struct cpumask *)cpumask);
}

void bpf_cpumask_setall(struct bpf_cpumask *cpumask)
{
cpumask_setall((struct cpumask *)cpumask);
}

void bpf_cpumask_clear(struct bpf_cpumask *cpumask)
{
cpumask_clear((struct cpumask *)cpumask);
}

bool bpf_cpumask_and(struct bpf_cpumask *dst,
const struct cpumask *src1,
const struct cpumask *src2)
{
return cpumask_and((struct cpumask *)dst, src1, src2);
}

void bpf_cpumask_or(struct bpf_cpumask *dst,
const struct cpumask *src1,
const struct cpumask *src2)
{
cpumask_or((struct cpumask *)dst, src1, src2);
}

void bpf_cpumask_xor(struct bpf_cpumask *dst,
const struct cpumask *src1,
const struct cpumask *src2)
{
cpumask_xor((struct cpumask *)dst, src1, src2);
}

bool bpf_cpumask_equal(const struct cpumask *src1, const struct cpumask *src2)
{
return cpumask_equal(src1, src2);
}

bool bpf_cpumask_intersects(const struct cpumask *src1, const struct cpumask *src2)
{
return cpumask_intersects(src1, src2);
}

bool bpf_cpumask_subset(const struct cpumask *src1, const struct cpumask *src2)
{
return cpumask_subset(src1, src2);
}

bool bpf_cpumask_empty(const struct cpumask *cpumask)
{
return cpumask_empty(cpumask);
}

bool bpf_cpumask_full(const struct cpumask *cpumask)
{
return cpumask_full(cpumask);
}

void bpf_cpumask_copy(struct bpf_cpumask *dst, const struct cpumask *src)
{
cpumask_copy((struct cpumask *)dst, src);
}

u32 bpf_cpumask_any(const struct cpumask *cpumask)
{
return cpumask_any(cpumask);
}

u32 bpf_cpumask_any_and(const struct cpumask *src1, const struct cpumask *src2)
{
return cpumask_any_and(src1, src2);
}

BTF_SET8_START(cpumask_kfunc_btf_ids)
BTF_ID_FLAGS(func, bpf_cpumask_create, KF_ACQUIRE | KF_RET_NULL)
BTF_ID_FLAGS(func, bpf_cpumask_release, KF_RELEASE | KF_TRUSTED_ARGS)
BTF_ID_FLAGS(func, bpf_cpumask_acquire, KF_ACQUIRE | KF_TRUSTED_ARGS)
BTF_ID_FLAGS(func, bpf_cpumask_kptr_get, KF_ACQUIRE | KF_KPTR_GET | KF_RET_NULL)
BTF_ID_FLAGS(func, bpf_cpumask_first, KF_TRUSTED_ARGS)
BTF_ID_FLAGS(func, bpf_cpumask_first_zero, KF_TRUSTED_ARGS)
BTF_ID_FLAGS(func, bpf_cpumask_set_cpu, KF_TRUSTED_ARGS)
BTF_ID_FLAGS(func, bpf_cpumask_clear_cpu, KF_TRUSTED_ARGS)
BTF_ID_FLAGS(func, bpf_cpumask_test_cpu, KF_TRUSTED_ARGS)
BTF_ID_FLAGS(func, bpf_cpumask_test_and_set_cpu, KF_TRUSTED_ARGS)
BTF_ID_FLAGS(func, bpf_cpumask_test_and_clear_cpu, KF_TRUSTED_ARGS)
BTF_ID_FLAGS(func, bpf_cpumask_setall, KF_TRUSTED_ARGS)
BTF_ID_FLAGS(func, bpf_cpumask_clear, KF_TRUSTED_ARGS)
BTF_ID_FLAGS(func, bpf_cpumask_and, KF_TRUSTED_ARGS)
BTF_ID_FLAGS(func, bpf_cpumask_or, KF_TRUSTED_ARGS)
BTF_ID_FLAGS(func, bpf_cpumask_xor, KF_TRUSTED_ARGS)
BTF_ID_FLAGS(func, bpf_cpumask_equal, KF_TRUSTED_ARGS)
BTF_ID_FLAGS(func, bpf_cpumask_intersects, KF_TRUSTED_ARGS)
BTF_ID_FLAGS(func, bpf_cpumask_subset, KF_TRUSTED_ARGS)
BTF_ID_FLAGS(func, bpf_cpumask_empty, KF_TRUSTED_ARGS)
BTF_ID_FLAGS(func, bpf_cpumask_full, KF_TRUSTED_ARGS)
BTF_ID_FLAGS(func, bpf_cpumask_copy, KF_TRUSTED_ARGS)
BTF_ID_FLAGS(func, bpf_cpumask_any, KF_TRUSTED_ARGS)
BTF_ID_FLAGS(func, bpf_cpumask_any_and, KF_TRUSTED_ARGS)
BTF_SET8_END(cpumask_kfunc_btf_ids)

static const struct btf_kfunc_id_set cpumask_kfunc_set = {
.owner = THIS_MODULE,
.set = &cpumask_kfunc_btf_ids,
};

BTF_ID_LIST(cpumask_dtor_ids)
BTF_ID(struct, bpf_cpumask)
BTF_ID(func, bpf_cpumask_release)

static int __init cpumask_kfunc_init(void)
{
int ret;
const struct btf_id_dtor_kfunc cpumask_dtors[] = {
{
.btf_id = cpumask_dtor_ids[0],
.kfunc_btf_id = cpumask_dtor_ids[1]
},
};

ret = bpf_mem_alloc_init(&bpf_cpumask_ma, 0, false);
ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING, &cpumask_kfunc_set);
ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, &cpumask_kfunc_set);
return ret ?: register_btf_id_dtor_kfuncs(cpumask_dtors,
ARRAY_SIZE(cpumask_dtors),
THIS_MODULE);
}

late_initcall(cpumask_kfunc_init);

0 comments on commit 1154120

Please sign in to comment.