Permalink
Find file
Fetching contributors…
Cannot retrieve contributors at this time
268 lines (215 sloc) 8.91 KB
"""
==============================
Tokenizing Text into Sentences
==============================
>>> para = "Hello World. It's good to see you. Thanks for buying this book."
>>> from nltk.tokenize import sent_tokenize
>>> sent_tokenize(para)
['Hello World.', "It's good to see you.", 'Thanks for buying this book.']
>>> import nltk.data
>>> tokenizer = nltk.data.load('tokenizers/punkt/PY3/english.pickle')
>>> tokenizer.tokenize(para)
['Hello World.', "It's good to see you.", 'Thanks for buying this book.']
>>> spanish_tokenizer = nltk.data.load('tokenizers/punkt/PY3/spanish.pickle')
>>> spanish_tokenizer.tokenize('Hola amigo. Estoy bien.')
['Hola amigo.', 'Estoy bien.']
===============================
Tokenizing Sentences into Words
===============================
>>> from nltk.tokenize import word_tokenize
>>> word_tokenize('Hello World.')
['Hello', 'World', '.']
>>> from nltk.tokenize import TreebankWordTokenizer
>>> tokenizer = TreebankWordTokenizer()
>>> tokenizer.tokenize('Hello World.')
['Hello', 'World', '.']
>>> word_tokenize("can't")
['ca', "n't"]
>>> from nltk.tokenize import PunktWordTokenizer
>>> tokenizer = PunktWordTokenizer()
>>> tokenizer.tokenize("Can't is a contraction.")
['Can', "'t", 'is', 'a', 'contraction.']
>>> from nltk.tokenize import WordPunctTokenizer
>>> tokenizer = WordPunctTokenizer()
>>> tokenizer.tokenize("Can't is a contraction.")
['Can', "'", 't', 'is', 'a', 'contraction', '.']
==============================================
Tokenizing Sentences using Regular Expressions
==============================================
>>> from nltk.tokenize import RegexpTokenizer
>>> tokenizer = RegexpTokenizer("[\w']+")
>>> tokenizer.tokenize("Can't is a contraction.")
["Can't", 'is', 'a', 'contraction']
>>> from nltk.tokenize import regexp_tokenize
>>> regexp_tokenize("Can't is a contraction.", "[\w']+")
["Can't", 'is', 'a', 'contraction']
>>> tokenizer = RegexpTokenizer('\s+', gaps=True)
>>> tokenizer.tokenize("Can't is a contraction.")
["Can't", 'is', 'a', 'contraction.']
=============================
Training a Sentence Tokenizer
=============================
>>> from nltk.tokenize import PunktSentenceTokenizer
>>> from nltk.corpus import webtext
>>> text = webtext.raw('overheard.txt')
>>> sent_tokenizer = PunktSentenceTokenizer(text)
>>> sents1 = sent_tokenizer.tokenize(text)
>>> sents1[0]
'White guy: So, do you have any plans for this evening?'
>>> from nltk.tokenize import sent_tokenize
>>> sents2 = sent_tokenize(text)
>>> sents2[0]
'White guy: So, do you have any plans for this evening?'
>>> sents1[678]
'Girl: But you already have a Big Mac...'
>>> sents2[678]
'Girl: But you already have a Big Mac...\\nHobo: Oh, this is all theatrical.'
>>> with open('/usr/share/nltk_data/corpora/webtext/overheard.txt', encoding='ISO-8859-2') as f:
... text = f.read()
>>> sent_tokenizer = PunktSentenceTokenizer(text)
>>> sents = sent_tokenizer.tokenize(text)
>>> sents[0]
'White guy: So, do you have any plans for this evening?'
>>> sents[678]
'Girl: But you already have a Big Mac...'
===========================================
Filtering Stopwords in a Tokenized Sentence
===========================================
>>> from nltk.corpus import stopwords
>>> english_stops = set(stopwords.words('english'))
>>> words = ["Can't", 'is', 'a', 'contraction']
>>> [word for word in words if word not in english_stops]
["Can't", 'contraction']
>>> stopwords.fileids()
['danish', 'dutch', 'english', 'finnish', 'french', 'german', 'hungarian', 'italian', 'norwegian', 'portuguese', 'russian', 'spanish', 'swedish', 'turkish']
>>> stopwords.words('dutch')
['de', 'en', 'van', 'ik', 'te', 'dat', 'die', 'in', 'een', 'hij', 'het', 'niet', 'zijn', 'is', 'was', 'op', 'aan', 'met', 'als', 'voor', 'had', 'er', 'maar', 'om', 'hem', 'dan', 'zou', 'of', 'wat', 'mijn', 'men', 'dit', 'zo', 'door', 'over', 'ze', 'zich', 'bij', 'ook', 'tot', 'je', 'mij', 'uit', 'der', 'daar', 'haar', 'naar', 'heb', 'hoe', 'heeft', 'hebben', 'deze', 'u', 'want', 'nog', 'zal', 'me', 'zij', 'nu', 'ge', 'geen', 'omdat', 'iets', 'worden', 'toch', 'al', 'waren', 'veel', 'meer', 'doen', 'toen', 'moet', 'ben', 'zonder', 'kan', 'hun', 'dus', 'alles', 'onder', 'ja', 'eens', 'hier', 'wie', 'werd', 'altijd', 'doch', 'wordt', 'wezen', 'kunnen', 'ons', 'zelf', 'tegen', 'na', 'reeds', 'wil', 'kon', 'niets', 'uw', 'iemand', 'geweest', 'andere']
=========================================
Looking up a Synset for a Word in WordNet
=========================================
>>> from nltk.corpus import wordnet
>>> syn = wordnet.synsets('cookbook')[0]
>>> syn.name()
'cookbook.n.01'
>>> syn.definition()
'a book of recipes and cooking directions'
>>> wordnet.synset('cookbook.n.01')
Synset('cookbook.n.01')
>>> wordnet.synsets('cooking')[0].examples()
['cooking can be a great art', 'people are needed who have experience in cookery', 'he left the preparation of meals to his wife']
>>> syn.hypernyms()
[Synset('reference_book.n.01')]
>>> syn.hypernyms()[0].hyponyms()
[Synset('annual.n.02'), Synset('atlas.n.02'), Synset('cookbook.n.01'), Synset('directory.n.01'), Synset('encyclopedia.n.01'), Synset('handbook.n.01'), Synset('instruction_book.n.01'), Synset('source_book.n.01'), Synset('wordbook.n.01')]
>>> syn.root_hypernyms()
[Synset('entity.n.01')]
>>> syn.hypernym_paths()
[[Synset('entity.n.01'), Synset('physical_entity.n.01'), Synset('object.n.01'), Synset('whole.n.02'), Synset('artifact.n.01'), Synset('creation.n.02'), Synset('product.n.02'), Synset('work.n.02'), Synset('publication.n.01'), Synset('book.n.01'), Synset('reference_book.n.01'), Synset('cookbook.n.01')]]
>>> syn.pos()
'n'
>>> len(wordnet.synsets('great'))
7
>>> len(wordnet.synsets('great', pos='n'))
1
>>> len(wordnet.synsets('great', pos='a'))
6
=========================================
Looking up Lemmas and Synonyms in WordNet
=========================================
>>> from nltk.corpus import wordnet
>>> syn = wordnet.synsets('cookbook')[0]
>>> lemmas = syn.lemmas()
>>> len(lemmas)
2
>>> lemmas[0].name()
'cookbook'
>>> lemmas[1].name()
'cookery_book'
>>> lemmas[0].synset() == lemmas[1].synset()
True
>>> [lemma.name() for lemma in syn.lemmas()]
['cookbook', 'cookery_book']
>>> synonyms = []
>>> for syn in wordnet.synsets('book'):
... for lemma in syn.lemmas():
... synonyms.append(lemma.name())
>>> len(synonyms)
38
>>> len(set(synonyms))
25
>>> gn2 = wordnet.synset('good.n.02')
>>> gn2.definition()
'moral excellence or admirableness'
>>> evil = gn2.lemmas()[0].antonyms()[0]
>>> evil.name()
'evil'
>>> evil.synset().definition()
'the quality of being morally wrong in principle or practice'
>>> ga1 = wordnet.synset('good.a.01')
>>> ga1.definition()
'having desirable or positive qualities especially those suitable for a thing specified'
>>> bad = ga1.lemmas()[0].antonyms()[0]
>>> bad.name()
'bad'
>>> bad.synset().definition()
'having undesirable or negative qualities'
=====================================
Calculating WordNet Synset Similarity
=====================================
>>> from nltk.corpus import wordnet
>>> cb = wordnet.synset('cookbook.n.01')
>>> ib = wordnet.synset('instruction_book.n.01')
>>> cb.wup_similarity(ib)
0.9166666666666666
>>> ref = cb.hypernyms()[0]
>>> cb.shortest_path_distance(ref)
1
>>> ib.shortest_path_distance(ref)
1
>>> cb.shortest_path_distance(ib)
2
>>> dog = wordnet.synsets('dog')[0]
>>> dog.wup_similarity(cb)
0.38095238095238093
>>> sorted(dog.common_hypernyms(cb))
[Synset('entity.n.01'), Synset('object.n.01'), Synset('physical_entity.n.01'), Synset('whole.n.02')]
>>> cook = wordnet.synset('cook.v.01')
>>> bake = wordnet.synset('bake.v.02')
>>> cook.wup_similarity(bake)
0.6666666666666666
>>> cb.path_similarity(ib)
0.3333333333333333
>>> cb.path_similarity(dog)
0.07142857142857142
>>> cb.lch_similarity(ib)
2.538973871058276
>>> cb.lch_similarity(dog)
0.9985288301111273
=============================
Discovering Word Collocations
=============================
>>> from nltk.corpus import webtext
>>> from nltk.collocations import BigramCollocationFinder
>>> from nltk.metrics import BigramAssocMeasures
>>> words = [w.lower() for w in webtext.words('grail.txt')]
>>> bcf = BigramCollocationFinder.from_words(words)
>>> bcf.nbest(BigramAssocMeasures.likelihood_ratio, 4)
[("'", 's'), ('arthur', ':'), ('#', '1'), ("'", 't')]
>>> from nltk.corpus import stopwords
>>> stopset = set(stopwords.words('english'))
>>> filter_stops = lambda w: len(w) < 3 or w in stopset
>>> bcf.apply_word_filter(filter_stops)
>>> bcf.nbest(BigramAssocMeasures.likelihood_ratio, 4)
[('black', 'knight'), ('clop', 'clop'), ('head', 'knight'), ('mumble', 'mumble')]
>>> from nltk.collocations import TrigramCollocationFinder
>>> from nltk.metrics import TrigramAssocMeasures
>>> words = [w.lower() for w in webtext.words('singles.txt')]
>>> tcf = TrigramCollocationFinder.from_words(words)
>>> tcf.apply_word_filter(filter_stops)
>>> tcf.apply_freq_filter(3)
>>> tcf.nbest(TrigramAssocMeasures.likelihood_ratio, 4)
[('long', 'term', 'relationship')]
"""
if __name__ == '__main__':
import doctest
doctest.testmod()