Skip to content

jeanhackpy/backcaster

 
 

Repository files navigation

backcaster

The goal of backcaster is to recover treelists with pixel-level tallies of stems by species and diameter class from Landis model data structures (biomass by species and age class).

Processs

The backcasting process can be boiled down to these steps:

  1. Import pixel-level Landis summary tables derived from the SilviaTerra basemap treelists to create the “lookup” table (lookup).

  2. Use kmeans clustering to assign each pixel to one of n clusters based on distribution of biomass amongst species.

  3. Import pixel-level Landis summary table for pixels that need to be backcasted into treelist form (new_data).

  4. Assign each pixel in new_data to one of the clusters identified in step 1.

  5. For each pixel in new_data use k-nearest neighbors process to identify the most similar pixel from set of possibilities in the same cluster in lookup.

  6. Pull the tree records from the nearest-neighbor match pixels and attribute them to the target pixels in new_data

Strengths

The backcasting process yields matched pixels that closely resemble the input pixels with respect to total biomass and biomass in the most abundant species/age classes. The process is relatively efficient and yields treelists down to the species/diameter level for each pixel which provides ultimate flexibility for analyzing the results.

Limitations

The set of potential treelists (i.e. combinations of stems per species and diameter per pixel) that can be produced using this process is limited to the set present in the 2019 SilviaTerra Basemap treelist predictions. If the projected Landis biomass tables extends into age classes far beyond what was present in the 2019 tables the backcasting process will not find pixels that match exactly. The resulting treelists should resemble the species composition and structure of the input Landis summaries, but be aware that the range of age classes is limited to those present in the input data.

Installation

You can install the current version of backcaster from GitHub with:

# install.packages("remotes")
remotes::install_github("SilviaTerra/backcaster")

Usage

To use backcaster you must have two sets of files stored on your machine: - The 90 meter resolution treelist files from SilviaTerra’s basemap data. These files are stored in a directory called landis_dir in this example. - The corresponding Landis summary files with biomass by species and age class for each pixel. These files are stored in a directory called treelist_dir in this example.

The following example walks through the process of importing the raw data, obtaining back-casted treelists, and some diagnostics.

library(backcaster)
library(dplyr)
library(ggplot2)
library(tibble)

theme_set(theme_bw())

There are 543 Landis summary files in the full dataset. The process could be run with a subset of these files but we expect performance to be best when the entire dataset is used.

all_landis_files <- list.files(
  landis_dir,
  full.names = TRUE
)

For this example we will hold one of the Landis summary files out of the pixel matching lookup table so it can be used to evaluate the matching performance. The rest of the files will be used to construct the lookup table.

# save one for testing the matching procedure
test_landis_file <- file.path(
  landis_dir,
  "10_11.csv.gz"
)

# use the rest for building lookup table
training_landis_files <- setdiff(
  all_landis_files,
  test_landis_file
)

All of the Landis summary files that will be used to construct the lookup table can be read in using data.table::fread. Alternative methods of importing the files that result in a single large data.frame-like object will also work.

landis_raw <- do.call(
  rbind,
  lapply(training_landis_files, data.table::fread)
)
#> Rows: 332,177
#> Columns: 5
#> $ pix_ctr_wkt                  <chr> "POINT(-1771455 -462015)", "POINT(-17714…
#> $ landis_species               <chr> "AcerMacr", "PinuPond", "QuerKell", "Ace…
#> $ age_class                    <int> 10, 30, 40, 20, 40, 30, 50, 60, 70, 80, …
#> $ aboveground_biomass_g_per_m2 <dbl> 0.769, 6.706, 24.308, 6.899, 13.051, 21.…
#> $ map_code                     <chr> "10_10_801", "10_10_801", "10_10_801", "…

The function process_landis is used re-shape the raw Landis data into the format optimized for subsequent operations. This is a very wide dataframe with observations of total biomass, biomass by species, and biomass by age class for each pixel.

lookup <- process_landis(landis_raw)
#> Rows: 2,459
#> Columns: 73
#> $ map_code                     <chr> "10_10_1", "10_10_10", "10_10_100", "10_…
#> $ aboveground_biomass_g_per_m2 <dbl> 3249.2450, 3037.4800, 428.1404, 333.0496…
#> $ AbieConc                     <dbl> 355.435, 87.819, 41.522, 0.000, 146.537,…
#> $ AcerMacr                     <dbl> 0.537, 0.000, 0.086, 0.000, 0.000, 0.003…
#> $ AlnuRhom                     <dbl> 86.720, 0.000, 14.758, 0.000, 0.000, 0.0…
#> $ ArbuMenz                     <dbl> 113.157, 0.000, 0.374, 0.000, 0.000, 0.0…
#> $ CaloDecu                     <dbl> 278.388, 378.370, 17.241, 21.822, 95.899…
#> $ CornNutt                     <dbl> 0.045, 0.000, 0.050, 0.000, 0.000, 0.007…
#> $ LithDens                     <dbl> 225.798, 0.000, 0.053, 0.000, 0.000, 7.4…
#> $ PinuLamb                     <dbl> 243.522, 201.006, 0.326, 17.982, 45.452,…
#> $ PinuPond                     <dbl> 508.428, 576.176, 21.260, 167.172, 409.5…
#> $ PinuSabi                     <dbl> 0.332, 0.000, 0.547, 6.258, 0.210, 0.002…
#> $ PseuMenz                     <dbl> 1020.984, 1586.239, 24.494, 17.774, 291.…
#> $ QuerChry                     <dbl> 262.268, 143.483, 20.023, 0.742, 0.000, …
#> $ QuerKell                     <dbl> 128.199, 64.387, 1.837, 24.379, 31.229, …
#> $ QuerWisl                     <dbl> 25.370, 0.000, 14.215, 7.084, 0.000, 0.0…
#> $ UmbeCali                     <dbl> 0.062, 0.000, 0.035, 0.000, 0.000, 0.001…
#> $ AbieMagn                     <dbl> 0.000, 0.000, 26.832, 14.661, 0.000, 0.0…
#> $ AescCali                     <dbl> 0.000, 0.000, 0.007, 0.000, 0.000, 0.000…
#> $ FX_R_SEED                    <dbl> 0.000000, 0.000000, 12.076997, 18.405002…
#> $ JuniOcci                     <dbl> 0.000, 0.000, 0.160, 0.636, 0.000, 0.004…
#> $ NOFX_NOR_SEED                <dbl> 0.0000000, 0.0000000, 23.8428350, 7.7702…
#> $ NOFX_R_SEED                  <dbl> 0.000000, 0.000000, 70.494584, 27.992359…
#> $ PinuAlbi                     <dbl> 0.000, 0.000, 0.005, 0.000, 0.000, 0.000…
#> $ PinuAtte                     <dbl> 0.000, 0.000, 0.001, 0.000, 0.000, 0.000…
#> $ PinuJeff                     <dbl> 0.000, 0.000, 135.794, 0.000, 4.362, 0.0…
#> $ PinuMono                     <dbl> 0.000, 0.000, 0.004, 0.000, 0.000, 0.036…
#> $ PinuMont                     <dbl> 0.000, 0.000, 0.025, 0.372, 0.000, 0.000…
#> $ PopuTrem                     <dbl> 0.000, 0.000, 0.004, 0.000, 0.000, 0.003…
#> $ QuerDoug                     <dbl> 0.000, 0.000, 1.965, 0.000, 0.000, 0.001…
#> $ QuerGarr                     <dbl> 0.000, 0.000, 0.082, 0.000, 5.101, 0.000…
#> $ TaxuBrev                     <dbl> 0.000, 0.000, 0.001, 0.000, 0.000, 0.002…
#> $ TorrCali                     <dbl> 0.000, 0.000, 0.007, 0.000, 0.000, 0.000…
#> $ TsugMert                     <dbl> 0.000, 0.000, 0.018, 0.000, 0.000, 0.002…
#> $ PinuCont                     <dbl> 0.000, 0.000, 0.000, 0.000, 0.000, 0.000…
#> $ age_20                       <dbl> 0.53700, 0.00000, 30.38717, 29.23279, 0.…
#> $ age_30                       <dbl> 5.34200, 5.58000, 15.48336, 14.96776, 33…
#> $ age_40                       <dbl> 32.70800, 46.48000, 52.37134, 20.23100, …
#> $ age_50                       <dbl> 66.69200, 81.47600, 30.85900, 25.71000, …
#> $ age_60                       <dbl> 141.140, 121.797, 11.922, 26.809, 63.711…
#> $ age_70                       <dbl> 192.842, 143.902, 29.530, 29.375, 78.679…
#> $ age_80                       <dbl> 233.207, 197.249, 15.432, 26.826, 93.533…
#> $ age_90                       <dbl> 241.858, 184.249, 6.907, 19.141, 55.723,…
#> $ age_100                      <dbl> 184.137, 147.728, 14.501, 6.178, 40.856,…
#> $ age_110                      <dbl> 191.355, 256.005, 5.723, 0.137, 75.575, …
#> $ age_120                      <dbl> 364.583, 276.664, 3.106, 8.124, 98.242, …
#> $ age_130                      <dbl> 138.632, 147.072, 70.741, 4.363, 34.806,…
#> $ age_140                      <dbl> 226.445, 122.274, 9.214, 3.732, 48.032, …
#> $ age_150                      <dbl> 235.432, 223.833, 8.708, 5.048, 38.156, …
#> $ age_160                      <dbl> 251.997, 229.956, 47.494, 11.273, 61.955…
#> $ age_170                      <dbl> 165.187, 188.495, 10.507, 12.160, 19.667…
#> $ age_180                      <dbl> 110.924, 83.496, 2.719, 21.761, 65.033, …
#> $ age_190                      <dbl> 96.859, 120.703, 1.616, 2.791, 19.411, 2…
#> $ age_200                      <dbl> 74.688, 94.056, 2.797, 2.304, 55.444, 26…
#> $ age_210                      <dbl> 74.537, 36.784, 11.429, 12.160, 13.369, …
#> $ age_220                      <dbl> 59.115, 110.169, 2.871, 12.079, 18.955, …
#> $ age_230                      <dbl> 90.356, 111.818, 3.228, 3.329, 6.898, 31…
#> $ age_240                      <dbl> 10.638, 63.310, 0.402, 2.555, 30.393, 16…
#> $ age_250                      <dbl> 31.693, 1.890, 5.711, 1.848, 2.913, 16.3…
#> $ age_260                      <dbl> 4.751, 16.962, 0.492, 15.475, 2.245, 6.7…
#> $ age_270                      <dbl> 22.720, 25.297, 0.000, 0.000, 0.000, 11.…
#> $ age_300                      <dbl> 0.870, 0.235, 0.000, 0.000, 0.000, 0.000…
#> $ age_10                       <dbl> 0.000000, 0.000000, 33.989544, 15.440068…
#> $ age_0                        <dbl> 0.000, 0.000, 0.000, 0.000, 0.000, 0.003…
#> $ age_310                      <dbl> 0.000, 0.000, 0.000, 0.000, 0.000, 0.000…
#> $ age_280                      <dbl> 0.000, 0.000, 0.000, 0.000, 0.000, 0.000…
#> $ age_290                      <dbl> 0.000, 0.000, 0.000, 0.000, 0.000, 0.000…
#> $ age_350                      <dbl> 0.000, 0.000, 0.000, 0.000, 0.000, 0.000…
#> $ age_320                      <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
#> $ age_340                      <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
#> $ age_360                      <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
#> $ age_380                      <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
#> $ age_390                      <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…

Our goal in this example is to generate a treelist for a set of pixels for which we do not already have treelists (e.g. model projection results from Landis). The target pixels file can be processed and imported in one fell swoop:

new_data <- process_landis(
  data.table::fread(test_landis_file)
)
#> Rows: 2,500
#> Columns: 73
#> $ map_code                     <chr> "10_11_1", "10_11_10", "10_11_100", "10_…
#> $ aboveground_biomass_g_per_m2 <dbl> 3091.838, 2773.577, 2964.190, 2113.569, …
#> $ AbieConc                     <dbl> 73.933, 436.066, 1178.398, 611.216, 462.…
#> $ AcerMacr                     <dbl> 31.067, 0.000, 0.000, 0.021, 66.706, 2.4…
#> $ AescCali                     <dbl> 0.255, 0.000, 0.000, 0.000, 0.000, 0.000…
#> $ AlnuRhom                     <dbl> 52.132, 0.000, 0.000, 0.024, 0.000, 0.00…
#> $ CaloDecu                     <dbl> 81.478, 662.608, 536.225, 291.330, 300.0…
#> $ CornNutt                     <dbl> 9.707, 0.000, 0.000, 5.684, 0.063, 0.000…
#> $ LithDens                     <dbl> 5.629, 0.000, 0.000, 0.001, 0.000, 0.000…
#> $ NOFX_R_SEED                  <dbl> 2.590086, 0.000000, 0.000000, 2.161740, …
#> $ PinuJeff                     <dbl> 23.029, 0.000, 0.000, 0.006, 0.000, 0.00…
#> $ PinuLamb                     <dbl> 169.555, 58.841, 94.580, 168.139, 284.14…
#> $ PinuPond                     <dbl> 139.514, 146.044, 249.807, 586.154, 284.…
#> $ PseuMenz                     <dbl> 1834.177, 1334.886, 902.714, 367.158, 15…
#> $ QuerChry                     <dbl> 428.201, 0.000, 0.000, 0.037, 0.000, 69.…
#> $ QuerKell                     <dbl> 223.631, 124.291, 2.466, 80.469, 173.571…
#> $ QuerWisl                     <dbl> 16.761, 0.000, 0.000, 0.011, 0.000, 0.00…
#> $ TorrCali                     <dbl> 0.179, 0.000, 0.000, 0.000, 0.000, 0.000…
#> $ ArbuMenz                     <dbl> 0.000, 9.486, 0.000, 1.090, 0.000, 0.531…
#> $ FX_R_SEED                    <dbl> 0.0000000, 1.3552730, 0.0000000, 0.00000…
#> $ JuniOcci                     <dbl> 0.000, 0.000, 0.000, 0.014, 0.000, 0.000…
#> $ PinuAlbi                     <dbl> 0.000, 0.000, 0.000, 0.003, 0.000, 0.000…
#> $ PinuAtte                     <dbl> 0.000, 0.000, 0.000, 0.003, 0.000, 0.000…
#> $ PinuMono                     <dbl> 0.000, 0.000, 0.000, 0.025, 0.000, 0.000…
#> $ PinuSabi                     <dbl> 0.000, 0.000, 0.000, 0.005, 0.000, 0.000…
#> $ PopuTrem                     <dbl> 0.000, 0.000, 0.000, 0.006, 0.000, 0.000…
#> $ QuerDoug                     <dbl> 0.000, 0.000, 0.000, 0.006, 0.000, 0.000…
#> $ QuerGarr                     <dbl> 0.000, 0.000, 0.000, 0.000, 0.000, 0.000…
#> $ TaxuBrev                     <dbl> 0.000, 0.000, 0.000, 0.000, 0.000, 0.000…
#> $ TsugMert                     <dbl> 0.000, 0.000, 0.000, 0.004, 0.000, 0.000…
#> $ UmbeCali                     <dbl> 0.000, 0.000, 0.000, 0.001, 0.000, 0.000…
#> $ AbieMagn                     <dbl> 0.000, 0.000, 0.000, 0.000, 0.000, 0.000…
#> $ PinuCont                     <dbl> 0.000, 0.000, 0.000, 0.000, 0.000, 0.000…
#> $ PinuMont                     <dbl> 0.000, 0.000, 0.000, 0.000, 0.000, 0.000…
#> $ NOFX_NOR_SEED                <dbl> 0.0000000, 0.0000000, 0.0000000, 0.00000…
#> $ age_10                       <dbl> 3.133086, 1.355273, 0.000000, 2.161740, …
#> $ age_20                       <dbl> 8.804000, 0.000000, 0.000000, 0.021000, …
#> $ age_30                       <dbl> 27.77300, 10.77000, 9.85200, 9.60100, 31…
#> $ age_40                       <dbl> 109.82200, 43.03000, 31.50300, 64.56900,…
#> $ age_50                       <dbl> 162.418, 90.181, 35.282, 50.375, 95.183,…
#> $ age_60                       <dbl> 185.696, 163.078, 64.475, 87.201, 218.62…
#> $ age_70                       <dbl> 203.558, 214.101, 65.489, 93.133, 150.58…
#> $ age_80                       <dbl> 273.028, 179.279, 74.413, 118.342, 158.7…
#> $ age_90                       <dbl> 256.566, 191.956, 125.140, 133.204, 200.…
#> $ age_100                      <dbl> 188.334, 202.590, 124.568, 128.228, 257.…
#> $ age_110                      <dbl> 226.980, 200.961, 211.420, 261.816, 168.…
#> $ age_120                      <dbl> 247.973, 306.873, 341.416, 95.344, 202.4…
#> $ age_130                      <dbl> 214.336, 97.721, 279.305, 148.515, 277.5…
#> $ age_140                      <dbl> 70.560, 113.775, 134.179, 147.995, 129.6…
#> $ age_150                      <dbl> 110.085, 159.199, 217.360, 128.047, 166.…
#> $ age_160                      <dbl> 192.629, 250.749, 321.620, 121.849, 189.…
#> $ age_170                      <dbl> 169.597, 148.122, 349.393, 48.172, 93.00…
#> $ age_180                      <dbl> 106.735, 85.929, 40.179, 73.916, 112.439…
#> $ age_190                      <dbl> 50.256, 59.523, 131.304, 64.086, 57.218,…
#> $ age_200                      <dbl> 44.899, 63.131, 144.275, 29.126, 74.799,…
#> $ age_210                      <dbl> 49.741, 13.195, 18.110, 35.511, 93.311, …
#> $ age_220                      <dbl> 28.502, 74.907, 54.101, 50.213, 130.087,…
#> $ age_230                      <dbl> 96.150, 51.767, 41.661, 8.946, 145.559, …
#> $ age_240                      <dbl> 9.651, 22.064, 8.787, 40.880, 29.159, 47…
#> $ age_250                      <dbl> 3.812, 1.718, 52.416, 96.857, 2.182, 1.0…
#> $ age_260                      <dbl> 30.303, 4.600, 52.525, 47.542, 17.439, 1…
#> $ age_270                      <dbl> 4.701, 23.003, 34.545, 26.803, 58.593, 6…
#> $ age_290                      <dbl> 1.134, 0.000, 0.000, 0.000, 0.000, 0.000…
#> $ age_300                      <dbl> 14.204, 0.000, 0.872, 0.740, 0.000, 0.78…
#> $ age_340                      <dbl> 0.458, 0.000, 0.000, 0.000, 0.000, 0.000…
#> $ age_0                        <dbl> 0.000, 0.000, 0.000, 0.006, 0.000, 0.000…
#> $ age_280                      <dbl> 0.000, 0.000, 0.000, 0.369, 0.000, 0.000…
#> $ age_310                      <dbl> 0.000, 0.000, 0.000, 0.000, 0.000, 0.000…
#> $ age_320                      <dbl> 0.000, 0.000, 0.000, 0.000, 0.000, 0.000…
#> $ age_350                      <dbl> 0.000, 0.000, 0.000, 0.000, 0.000, 0.000…
#> $ age_360                      <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
#> $ age_380                      <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
#> $ age_390                      <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…

The backcasting process can be executed with a call to the function backcast_landis_to_treelists:

backcasted <- backcast_landis_to_treelists(
  new_data = new_data,
  lookup = lookup,
  n_clusters = 50,
  treelist_dir = treelist_dir
)
#> clustering lookup table on biomass x species
#> identifying nearest neighbor matches
#> collecting matching tree records
#> summarizing original vs matched Landis attributes

The output of that function contains the treelist (backcasted$trees) and some diagnostic tables (backcasted$comp_stats, backcasted$comp_frame). The treelist object contains one row per species (common) and diameter per pixel.

#> Rows: 599,040
#> Columns: 6
#> $ pix_ctr_wkt <chr> "POINT(-1768035 -455625)", "POINT(-1771275 -455355)", "PO…
#> $ map_code    <chr> "10_11_1889", "10_11_2003", "10_11_1889", "10_11_2003", "…
#> $ pix_area_ha <dbl> 0.81, 0.81, 0.81, 0.81, 0.81, 0.81, 0.81, 0.81, 0.81, 0.8…
#> $ common      <chr> "California black oak", "California black oak", "ponderos…
#> $ diameter    <int> 2, 2, 5, 5, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11,…
#> $ nTrees      <dbl> 57.891, 57.891, 5.572, 5.572, 14.138, 14.138, 10.092, 10.…

Canopy Cover

There is a function called estimate_canopy_cover that will pull canopy cover values from local FIA data based on density of overstory trees. When a treelist dataframe is passed to this function it will return a dataframe with canopy cover expressed as a proportion (0 - 1) for each pixel. These values can readily converted to a percent by multiplying the value by 100.

cc <- estimate_canopy_cover(backcasted$trees)
#> Rows: 2,500
#> Columns: 5
#> $ pix_ctr_wkt <chr> "POINT(-1767045 -454545)", "POINT(-1767045 -454635)", "PO…
#> $ map_code    <chr> "10_11_2500", "10_11_2450", "10_11_2400", "10_11_2350", "…
#> $ bapa        <dbl> 156.6060, 201.2228, 174.4784, 136.2411, 163.4754, 156.289…
#> $ tpa         <dbl> 170.0565, 245.9419, 201.0491, 154.1206, 188.9714, 194.188…
#> $ cc          <dbl> 0.2803961, 0.2738877, 0.1934686, 0.2873319, 0.3361558, 0.…

Diagnostics

The backcasted object also contains two tables that are useful for generating diagnostics for the accuracy of the matching process. Generally speaking, the pixel matching process will do a better job matching the values of the species and age classes with the largest share of biomass for each pixel.

Total biomass

attribute original mean matched mean RMSE RMSE %
aboveground_biomass_g_per_m2 2852 2817 115 4

Biomass by species

species original mean matched mean RMSE RMSE %
PseuMenz 1138 1154 93.66 8
AbieConc 524 515 99.12 19
CaloDecu 453.4 419.1 117.9 26
PinuPond 362.5 367.6 90.97 25
PinuLamb 152.8 156.2 73.38 48
QuerKell 98.18 93.67 72.36 74
QuerChry 39.03 33.3 56.94 146
AcerMacr 17.25 14.89 41.71 242
QuerWisl 8.485 7.811 28.1 331
AbieMagn 7.563 5.436 28.25 374
ArbuMenz 7.465 6.39 28.36 380
PinuJeff 6.857 6.193 26.73 390
LithDens 6.416 8.419 30.02 468
AlnuRhom 5.756 4.707 23.22 403
NOFX_R_SEED 5.039 4.634 7.793 155
TsugMert 4.166 5.103 26.84 644
PinuSabi 3.656 3.516 19.95 546
CornNutt 2.504 2.258 6.417 256
FX_R_SEED 1.543 1.595 3.5 227
PinuMono 1.493 0.5074 18.18 1218
QuerDoug 1.346 1.174 10.15 754
JuniOcci 1.308 1.668 13 994
AescCali 1.019 0.7846 6.017 591
PinuMont 0.8548 0.6748 6.286 735
PopuTrem 0.6074 0.9544 9.092 1497
NOFX_NOR_SEED 0.3187 0.3686 2.429 762
PinuCont 0.2669 0.2759 2.386 894
QuerGarr 0.09528 0.2404 2.714 2848
TaxuBrev 0.07983 0.1354 1.465 1835
TorrCali 0.06021 0.0468 0.5392 896
UmbeCali 0.0512 0.05308 0.9586 1872
PinuAlbi 0.02423 0.005799 0.6377 2631
PinuAtte 0.00294 0.04703 0.9043 30755

Biomass by age class

age class original mean matched mean RMSE RMSE %
0 - 10 0.006766 0.01016 0.1032 1525
10 - 20 3.4 3.727 4.965 146
20 - 30 3.871 4.047 7.105 184
30 - 40 11.94 12.12 8.358 70
40 - 50 46.69 47.74 17.2 37
50 - 60 82.95 80.97 23.59 28
60 - 70 136.6 131 37.42 27
70 - 80 156.8 153.8 38.7 25
80 - 90 164.3 157.5 48.72 30
90 - 100 174.5 173 42.96 25
100 - 110 182.8 174.9 50.2 27
110 - 120 179.6 183.5 52.49 29
120 - 130 202.3 209.2 68.52 34
130 - 140 185 179.8 62.5 34
140 - 150 133.7 132.6 36.18 27
150 - 160 155.3 156.8 38.96 25
160 - 170 180.2 182.3 44.72 25
170 - 180 123.3 128.5 43.06 35
180 - 190 100.6 96.43 44.03 44
190 - 200 89.26 88.91 39.17 44
200 - 210 101.4 102.6 42.48 42
210 - 220 63.84 58.1 40.03 63
220 - 230 105.1 103 51.03 49
230 - 240 127.2 118.4 68.36 54
240 - 250 35.08 36.78 33.45 95
250 - 260 20.04 18.22 29.09 145
260 - 270 27.75 28.08 30.6 110
270 - 280 48.4 46.81 32.23 67
280 - 290 0.2187 0.1744 3.73 1705
290 - 300 2.635 2.074 15.9 603
300 - 310 4.736 3.715 18.13 383
310 - 320 0.6709 0.5613 6.785 1011
320 - 330 1.141 1.042 12.49 1095
340 - 350 0.009248 0.005018 0.08627 933
350 - 360 0.1074 0.06944 3.094 2881
360 - 370 0.2148 0.1094 7.017 3267
380 - 390 0.0003472 0.0001736 0.01503 4330
390 - 400 0.0003472 0.0001736 0.01503 4330

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • R 100.0%