Skip to content

Latest commit

 

History

History
378 lines (302 loc) · 16.2 KB

nMassOscillatorInteractive.rst

File metadata and controls

378 lines (302 loc) · 16.2 KB

nMassOscillatorInteractive.py

You can view and download this file on Github: nMassOscillatorInteractive.py

#+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
# This is an EXUDYN example
#
# Details:  Nonlinear oscillations interactive simulation
#
# Author:   Johannes Gerstmayr
# Date:     2020-01-16
#
# Copyright:This file is part of Exudyn. Exudyn is free software. You can redistribute it and/or modify it under the terms of the Exudyn license. See 'LICENSE.txt' for more details.
#
#+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

import exudyn as exu
from exudyn.itemInterface import *
from exudyn.graphicsDataUtilities import *
import matplotlib.pyplot as plt
from exudyn.interactive import InteractiveDialog

import numpy as np
from math import sin, cos, pi, sqrt

import time #for sleep()
SC = exu.SystemContainer()
mbs = SC.AddSystem()

#%%+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
#
N = 12;                     #number of masses
spring = 800;               #stiffness [800]
mass = 1;                   #mass
damper = 2;               #old:0.1; damping parameter
force = 1;                 #force amplitude

d0 = damper*spring/(2*sqrt(mass*spring))  #dimensionless damping for single mass


caseHarmonic = 1
#damper=2
#mode1:force=0.52
#mode2:force=2
#mode3:force=4
#mode12: force=100, damping=0.05, period=0.005

caseStep = 2
#damper=1
#force=20


mbs.variables['loadCase'] = caseHarmonic
mbs.variables['resetMotion'] = 0 #run
mbs.variables['forceAmplitude'] = force
eigenMode = 1

h = 0.002            #step size
deltaT = 0.01 #time period to be simulated between every update



# if (mode < 2) h=h*2; F=0.4*F; end
# if (mode < 5) h=h*2; F=0.4*F; end
# if (mode < 6) h=h*2.5; end
# if (mode == 6) F=F*2; end
# if (mode == 3) h=h*0.5; end

# if (mode > 16) F=2*F; end
# if (mode > 10) F=2*F; end
# if (N < 11) h=h/2; l_mass = 2*l_mass; r_mass=2*r_mass; F=0.5*F; end
# if (N < 6) h=h/2; l_mass = 2*l_mass; r_mass=2*r_mass; end

# om=sqrt(diag(ew))





#%%+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
#create model for linear and nonlinear oscillator:
# L=0.5
# load0 = 80

# omega0=np.sqrt(spring/mass)
# f0 = 0.*omega0/(2*np.pi)
# f1 = 1.*omega0/(2*np.pi)

# tEnd = 200     #end time of simulation
# steps = 20000  #number of steps

omegaInit = 3.55
omegaMax = 40 #for plots
mbs.variables['mode'] = 0           #0=linear, 1=cubic nonlinear
mbs.variables['omega'] = omegaInit  #excitation frequency changed by user
#mbs.variables['omega'] = omegaInit #excitation, changed in simFunction
mbs.variables['phi'] = 0            #excitation phase, used to get smooth excitations
mbs.variables['stiffness'] = spring
mbs.variables['damping'] = damper
mbs.variables['dampingPrev'] = damper


# #user function for spring force
# def springForce(mbs, t, itemIndex, u, v, k, d): #changed 2023-01-21:, mu, muPropZone):
#     k=mbs.variables['stiffness']
#     d=mbs.variables['damping']
#     if mbs.variables['mode'] == 0:
#         return k*u + v*d
#     else:
#         #return 0.1*k*u+k*u**3+v*d
#         return k*u+1000*k*u**3+v*d #breaks down at 13.40Hz

# mode = 0 #0...forward, 1...backward

#user function for load
def userLoad(mbs, t, load):
    f = mbs.variables['forceAmplitude']
    fact = 1
    if mbs.variables['loadCase']==caseHarmonic:
        fact = sin(mbs.GetSensorValues(mbs.variables['sensorPhi']))
    return f*fact

def userLoad3D(mbs,t, load):
    f = mbs.variables['forceAmplitude']
    fact = 1
    if mbs.variables['loadCase']==caseHarmonic:
        fact = sin(mbs.GetSensorValues(mbs.variables['sensorPhi']))
    mbs.SetLoadParameter(0,'loadVector',[fact,0,0])
    return [f*fact,0,0]

#dummy user function for frequency
def userFrequency(mbs, t, load):
    return mbs.variables['omega']

#user function used in GenericODE2 to integrate current omega
def UFintegrateOmega(mbs, t, itemIndex, q, q_t):
    return [mbs.variables['omega']] #current frequency*2*pi is integrated into phi, return vector!

#ground node
nGround=mbs.AddNode(NodePointGround(referenceCoordinates = [0,0,0]))

#drawing parameters:
l_mass = 0.2          #spring length
r_mass = 0.030*2       #radius of mass
r_spring = r_mass*1.2
L0 = l_mass*1
L = N * l_mass + 4*l_mass
z=-r_mass-0.1
hy=0.25*L
hy1=2*hy - 4*r_mass
hy0=-4*r_mass
maxAmp0 = 0.1
maxAmpN = 0.1*N

background = [GraphicsDataQuad([[-L0,hy0,z],[ L,hy0,z],[ L,hy1,z],[-L0,hy1,z]],
                              color=color4lightgrey)]
offCircleY = 1*hy
for i in range(N):
    t=r_mass*0.5
    ox = l_mass*(i+1)
    oy = offCircleY
    line0 = {'type':'Line', 'data':[ox-t,oy+0,0, ox+t,oy+0,0], 'color':color4grey}
    line1 = {'type':'Line', 'data':[ox+0,oy-t,0, ox+0,oy+t,0], 'color':color4grey}
    background += [line0, line1]

oGround=mbs.AddObject(ObjectGround(visualization=VObjectGround(graphicsData=background)))
#marker for ground (=fixed):
groundMarker=mbs.AddMarker(MarkerNodeCoordinate(nodeNumber= nGround, coordinate = 0))
prevMarker = groundMarker
nMass = []
mbs.variables['springDamperList'] = []

for i in range(N):
    #node for 3D mass point:
    col = color4steelblue
    if i==0:
        col = color4green
    elif i==N-1:
        col = color4lightred

    gSphere = GraphicsDataSphere(point=[0,0,0], radius=r_mass, color=col, nTiles=16)
    node = mbs.AddNode(Node1D(referenceCoordinates = [l_mass*(1+len(nMass))],
                              initialCoordinates=[0.],
                              initialVelocities=[0.]))
    massPoint = mbs.AddObject(Mass1D(nodeNumber = node, physicsMass=mass,
                                     referencePosition=[0,0,0],
                                     visualization=VMass1D(graphicsData=[gSphere])))

    gCircle = {'type':'Circle','position':[0,0,0],'radius':0.5*r_mass, 'color':col}
    massPoint2 = mbs.AddObject(Mass1D(nodeNumber = node, physicsMass=0,
                                     referencePosition=[l_mass*(len(nMass)+1),offCircleY-l_mass*(len(nMass)+1),0],
                                     referenceRotation=[[0,1,0],[1,0,0],[0,0,1]],
                                     visualization=VMass1D(graphicsData=[gCircle])))


    # node = mbs.AddNode(Point(referenceCoordinates = [l_mass*(1+len(nMass)),0,0]))

    # massPoint = mbs.AddObject(MassPoint(physicsMass = mass, nodeNumber = node,
    #                                     visualization=VMassPoint(graphicsData=[gSphere])))

    nMass += [node]
    #marker for springDamper for first (x-)coordinate:
    nodeMarker =mbs.AddMarker(MarkerNodeCoordinate(nodeNumber= node, coordinate = 0))

    #Spring-Damper between two marker coordinates
    sd = mbs.AddObject(CoordinateSpringDamper(markerNumbers = [prevMarker, nodeMarker],
                                         stiffness = spring, damping = damper,
                                         #springForceUserFunction = springForce,
                                         visualization=VCoordinateSpringDamper(drawSize=r_spring)))
    mbs.variables['springDamperList'] += [sd]
    prevMarker = nodeMarker

#add load to last mass:
if False: #scalar load
    mbs.AddLoad(LoadCoordinate(markerNumber = nodeMarker,
                               load = 0, loadUserFunction=userLoad)) #load set in user function
else:
    mMassN = mbs.AddMarker(MarkerBodyPosition(bodyNumber= massPoint, localPosition=[0,0,0]))
    mbs.AddLoad(Force(markerNumber=mMassN, loadVector=[1,0,0],
                      loadVectorUserFunction=userLoad3D))

# #dummy load applied to ground marker, just to record/integrate frequency
lFreq = mbs.AddLoad(LoadCoordinate(markerNumber = groundMarker,
                                   load = 0, loadUserFunction=userFrequency))

sensPos0 = mbs.AddSensor(SensorNode(nodeNumber=nMass[0], fileName='solution/nMassPos0.txt',
                                    outputVariableType=exu.OutputVariableType.Coordinates))
sensPosN = mbs.AddSensor(SensorNode(nodeNumber=nMass[-1], fileName='solution/nMassPosN.txt',
                                    outputVariableType=exu.OutputVariableType.Coordinates))
sensFreq = mbs.AddSensor(SensorLoad(loadNumber=lFreq, fileName='solution/nMassFreq.txt',
                                    visualization=VSensorLoad(show=False)))

#%%+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
#compute eigenvalues
from exudyn.solver import ComputeODE2Eigenvalues
mbs.Assemble()
[values, vectors] = ComputeODE2Eigenvalues(mbs)
print('omegas (rad/s)=', np.sqrt(values))

#%%+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
#integrate omega: node used to integrate omega into phi for excitation function
nODE2=mbs.AddNode(NodeGenericODE2(referenceCoordinates=[0], initialCoordinates=[0],initialCoordinates_t=[0],
                                  numberOfODE2Coordinates=1))

oODE2=mbs.AddObject(ObjectGenericODE2(nodeNumbers=[nODE2],massMatrix=np.eye(1),
                                      forceUserFunction=UFintegrateOmega,
                                      visualization=VObjectGenericODE2(show=False)))
#improved version, using integration of omega:
mbs.variables['sensorPhi'] = mbs.AddSensor(SensorNode(nodeNumber=nODE2, fileName='solution/nonlinearPhi.txt',
                                    outputVariableType = exu.OutputVariableType.Coordinates_t,
                                    visualization=VSensorNode(show=False)))
#%%+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
#finalize model and settings
mbs.Assemble()


SC.visualizationSettings.general.textSize = 12
SC.visualizationSettings.openGL.lineWidth = 2
SC.visualizationSettings.openGL.multiSampling = 4
SC.visualizationSettings.general.graphicsUpdateInterval = 0.005
#SC.visualizationSettings.window.renderWindowSize=[1024,900]
SC.visualizationSettings.window.renderWindowSize=[1600,1000]
SC.visualizationSettings.general.showSolverInformation = False
SC.visualizationSettings.general.drawCoordinateSystem = False

SC.visualizationSettings.loads.fixedLoadSize=0
SC.visualizationSettings.loads.loadSizeFactor=0.5
SC.visualizationSettings.loads.drawSimplified=False
SC.visualizationSettings.loads.defaultSize=1
SC.visualizationSettings.loads.defaultRadius=0.01

SC.visualizationSettings.general.autoFitScene = True #otherwise, renderState not accepted for zoom
exu.StartRenderer()

#++++++++++++++++++++++++++++++++++++++++
#setup simulation settings and run interactive dialog:
simulationSettings = exu.SimulationSettings()
simulationSettings.timeIntegration.generalizedAlpha.spectralRadius = 1
simulationSettings.solutionSettings.writeSolutionToFile = False
simulationSettings.solutionSettings.solutionWritePeriod = 0.1 #data not used
simulationSettings.solutionSettings.sensorsWritePeriod = 0.1 #data not used
simulationSettings.solutionSettings.solutionInformation = 'n-mass-oscillatior'
simulationSettings.timeIntegration.verboseMode = 0 #turn off, because of lots of output

simulationSettings.timeIntegration.numberOfSteps = int(deltaT/h)
simulationSettings.timeIntegration.endTime = deltaT
simulationSettings.timeIntegration.newton.useModifiedNewton = True

simulationSettings.displayComputationTime = True
simulationSettings.parallel.numberOfThreads = 2

#%%+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
#set up interactive window

#interactive function
def SimulationUF(mbs, dialog):
    if mbs.variables['resetMotion']:
        u = mbs.systemData.GetODE2Coordinates()
        u *= 0
        mbs.systemData.SetODE2Coordinates(u, configuration=exu.ConfigurationType.Initial)
        v = mbs.systemData.GetODE2Coordinates_t()
        v *= 0
        mbs.systemData.SetODE2Coordinates_t(v, configuration=exu.ConfigurationType.Initial)
        #clear plot data:
        nPoints = dialog.plots['nPoints']
        t = mbs.systemData.GetTime()
        p = mbs.variables['period']
        for j in range(len(dialog.plots['sensors'])):
            #dialog.plots['data'][j][:,1] *= 0
            # tEnd = dialog.plots['data'][j][:,0]
            dialog.plots['data'][j] = np.zeros((nPoints,2))
            dialog.plots['data'][j][:,0] = p*np.arange(0,nPoints) + ( t-2*p*(nPoints))
        dialog.plots['currentIndex'] = nPoints-1

    if mbs.variables['dampingPrev'] != mbs.variables['damping']:
        #print('here')
        for sd in mbs.variables['springDamperList']:
            mbs.SetObjectParameter(sd,'damping',mbs.variables['damping'])
        mbs.variables['dampingPrev'] = mbs.variables['damping']

    dialog.period = mbs.variables['period']

#++++++++++++++++++++++++++++
#define items for dialog
dialogItems = [{'type':'label', 'text':'n-mass oscillatior simulator', 'grid':(0,0,2), 'options':['L']},
               {'type':'radio', 'textValueList':[('harmonic',caseHarmonic),('step',caseStep)], 'value': mbs.variables['loadCase'], 'variable':'loadCase', 'grid': [(2,0),(2,1)]},
               {'type':'label', 'text':'excitation frequency (rad/s):', 'grid':(5,0)},
               {'type':'slider', 'range':(0, 60), 'value':omegaInit, 'steps':601, 'variable':'omega', 'grid':(5,1)},
               {'type':'radio', 'textValueList':[('run',0),('reset motion',1)], 'value': mbs.variables['resetMotion'], 'variable':'resetMotion', 'grid': [(6,0),(6,1)]},
               {'type':'label', 'text':'force amplitude:', 'grid':(7,0)},
               {'type':'slider', 'range': (0, 100), 'value':mbs.variables['forceAmplitude'], 'steps':1001, 'variable':'forceAmplitude', 'grid':(7,1)},
               {'type':'label', 'text':'damping:', 'grid':(8,0)},
               {'type':'slider', 'range': (0, 40), 'value':damper, 'steps':801, 'variable':'damping', 'grid':(8,1)},
               {'type':'label', 'text':'period:', 'grid':(9,0)},
               {'type':'slider', 'range': (0.001, 0.1), 'value':deltaT, 'steps':100, 'variable':'period', 'grid':(9,1)},
               # {'type':'label', 'text':'stiffness:', 'grid':(7,0)},
               # {'type':'slider', 'range':(0, 1000), 'value':spring, 'steps':500, 'variable':'stiffness', 'grid':(7,1)}
               ]

#++++++++++++++++++++++++++++++++++++++++
#specify subplots to be shown interactively
plt.close('all')

plots={'fontSize':12,'sizeInches':(16,12),'nPoints':400,
       'subplots':(2,1),
       'sensors':[[(sensPos0,0),(sensPos0,1),'time','mass0 position'],
                  [(sensPosN,0),(sensPosN,1),'time','massN position'],
                  #[(sensFreq,0),(sensFreq,1),'time','excitation freq.(rad/s)']
                  ],
       'subplots':False,
       'lineStyles':['g-','r-'],
       'limitsX':[(),()], #omit if time auto-range
       'limitsY':[(),()]}#,(0,omegaMax)]}
       # 'limitsY':[(-maxAmp0,maxAmp0),(-maxAmpN,maxAmpN)]}#,(0,omegaMax)]}


dialog = InteractiveDialog(mbs=mbs, simulationSettings=simulationSettings,
                           simulationFunction=SimulationUF, title='Interactive window',
                           dialogItems=dialogItems, period=deltaT,
                           #realtimeFactor=1,
                           plots=plots,
                           fontSize=12)

# #stop solver and close render window
exu.StopRenderer() #safely close rendering window!