Skip to content

Latest commit

 

History

History
255 lines (210 loc) · 10.5 KB

particlesTest3D.rst

File metadata and controls

255 lines (210 loc) · 10.5 KB

particlesTest3D.py

You can view and download this file on Github: particlesTest3D.py

#+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
# This is an EXUDYN example
#
# Details:  test with parallel computation and particles
#
# Author:   Johannes Gerstmayr
# Date:     2021-11-01
#
# Copyright:This file is part of Exudyn. Exudyn is free software. You can redistribute it and/or modify it under the terms of the Exudyn license. See 'LICENSE.txt' for more details.
#
#+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

import exudyn as exu
from exudyn.itemInterface import *
from exudyn.utilities import *
from exudyn.graphicsDataUtilities import *

import numpy as np

SC = exu.SystemContainer()
mbs = SC.AddSystem()

#create an environment for mini example

nGround = mbs.AddNode(NodePointGround(referenceCoordinates=[0,0,0]))
#mLast = mbs.AddMarker(MarkerNodePosition(nodeNumber=nGround))

np.random.seed(1) #always get same results

useGraphics = True

L = 1
n = 8000*8*4 #*8*4 #32*8*8
# n = 5000
a = 0.2*L*0.5*10*0.5
radius = 0.35*a
m = 0.05
k = 4e3*10*0.5 #4e3 needs h=1e-4
d = 0.001*k*4*0.5
markerList = []
radiusList = []
gDataList = []


rb = 30*L
H = 8*L
pos0 = [0,-rb-0.5*H,0]
pos1 = [-rb-H,0,0]
pos2 = [ rb+H,0,0]
pos3 = [ 0,0,rb+H]
pos4 = [ 0,0,-rb-H]
posList=[pos0,pos1,pos2,pos3,pos4]
for pos in posList:
    #gDataList += [{'type':'Circle','position':pos,'radius':rb, 'color':color4grey}]
    #gDataList += [GraphicsDataCylinder(pAxis=pos, vAxis=[0,0,0.1], radius=rb, color= color4grey, nTiles=200)]
    colBG = color4grey
    colBG[3] = 0.05
    gDataList += [GraphicsDataSphere(point=pos, radius=rb, color= colBG, nTiles=100)]
    #gDataList += [GraphicsDataRectangle(-1.2*H,-H*0.75,1.2*H,16*H,color=color4red)]
    nMass = mbs.AddNode(NodePointGround(referenceCoordinates=pos,
                        visualization=VNodePointGround(show=False)))
    #oMass = mbs.AddObject(MassPoint(physicsMass=m, nodeNumber=nMass))
    mThis = mbs.AddMarker(MarkerNodePosition(nodeNumber=nMass))
    markerList += [mThis]
    radiusList += [rb]


ns = 20
gDataSphere = []
for i in range(ns):
    gRad = radius*(0.75+0.4*(i/ns))
    # gSphere = GraphicsDataCylinder(pAxis=[0,0,-0.25], vAxis=[0,0,0.5], radius=gRad, color=color4blue, nTiles=12)
    # gSphere2 = GraphicsDataCylinder(pAxis=[0,0,-0.3], vAxis=[0,0,0.6], radius=0.8*gRad, color=color4steelblue, nTiles=10)
    gSphere = GraphicsDataSphere(point=[0,0,0], radius=gRad, color=color4blue, nTiles=8)
    gDataSphere += [[gSphere]]

gDataSphere = []

color4node = color4blue
print("start create: number of masses =",n)
for i in range(n):

    kk = int(i/12800)
    color4node = color4list[min(kk%12,11)]
    # if (i%10000 == 0):
        # gDataSphere = []
        # for i in range(ns):
        #     gRad = radius*(0.75+0.4*(i/ns))
        #     # gSphere = GraphicsDataCylinder(pAxis=[0,0,-0.25], vAxis=[0,0,0.5], radius=gRad, color=color4blue, nTiles=12)
        #     # gSphere2 = GraphicsDataCylinder(pAxis=[0,0,-0.3], vAxis=[0,0,0.6], radius=0.8*gRad, color=color4steelblue, nTiles=10)
        #     gSphere = GraphicsDataSphere(point=[0,0,0], radius=gRad, color=color4list[min(k%12,11)], nTiles=8)
        #     gDataSphere += [[gSphere]]


    if (i%20000 == 0): print("create mass",i)
    offy = 0
    row = 8*2 #160
    offy = -0.25*H-1.5*a+int(i/(row*row))*a+a*0.2*np.random.random(1)[0]

    offx = -0.6*a-H*0.5 + (i%row+1)*a+0.2*a*np.random.random(1)[0]
    offz = -0.6*a-H*0.5 + (int(i/row)%row+1)*a+0.2*a*np.random.random(1)[0]

    valueRand = np.random.random(1)[0]
    gRad = radius*(0.75+0.4*valueRand)
    #gSphere = GraphicsDataCylinder(pAxis=[0,0,-0.25], vAxis=[0,0,0.25], radius=gRad, color= color4steelblue, nTiles=16)
    #gSphere2 = GraphicsDataCylinder(pAxis=[0,0,-0.3], vAxis=[0,0,0.3], radius=0.8*gRad, color= color4blue, nTiles=12)
    nMass = mbs.AddNode(NodePoint(referenceCoordinates=[offx,offy,offz],
                                  initialVelocities=[0,-20,0],
                                  visualization=VNodePoint(show=True,drawSize=2*gRad, color=color4node)))
    # gData = gDataSphere[int(valueRand*ns)]
    # if not useGraphics:
    #     gData = []
    # if i%2 != 0:
    #     gData = []

    oMass = mbs.AddObject(MassPoint(physicsMass=m, nodeNumber=nMass,
                                    #visualization=VMassPoint(graphicsData=[gSphere,gSphere2])
                                    # visualization=VMassPoint(graphicsData=gData)
                                    ))
    mThis = mbs.AddMarker(MarkerNodePosition(nodeNumber=nMass))
    mbs.AddLoad(Force(markerNumber=mThis, loadVector= [0,-m*9.81,0]))
    markerList += [mThis]
    radiusList += [gRad]
    #if (i==n-1):
    #    mbs.AddLoad(Force(markerNumber = mThis, loadVector = [5, -20, 0]))

    #mbs.AddObject(CartesianSpringDamper(markerNumbers=[mLast, mThis],
    #                                    stiffness = [k,k,k], damping=[d,d,d], offset=[a,0,0],
    #                                    visualization = VCartesianSpringDamper(drawSize = 0.1*a)))

    mLast = mThis
print("finish create")
#put here, such that it is transparent in background
oGround=mbs.AddObject(ObjectGround(referencePosition= [0,0,0],
                                   visualization=VObjectGround(graphicsData=gDataList)))

if True:
    gContact = mbs.AddGeneralContact()
    gContact.verboseMode = 1

    for i in range(len(markerList)):
        m = markerList[i]
        r = radiusList[i]
        gContact.AddSphereWithMarker(m, radius=r, contactStiffness=k, contactDamping=d, frictionMaterialIndex=0)

    # f=n/32000
    ssx = 20 #search tree size
    #ssy = int(500*f) #search tree size
    ssy = 200
    # mbs.Assemble()
    # gContact.FinalizeContact(mbs, searchTreeSize=np.array([ssx,ssy,ssx]), frictionPairingsInit=np.eye(1),
    #                          searchTreeBoxMin=np.array([-1.2*H,-0.75*H,-1.2*H]),
    #                          searchTreeBoxMax=np.array([1.2*H,4*16*H,1.2*H])
    #                          )
    gContact.SetFrictionPairings(np.eye(1))
    gContact.SetSearchTreeCellSize(numberOfCells=[ssx,ssy,ssx])
    gContact.SetSearchTreeBox(pMin=np.array([-1.2*H,-0.75*H,-1.2*H]), pMax=np.array([1.2*H,4*16*H,1.2*H]))
    print('treesize=',ssx*ssx*ssy)

mbs.Assemble()
print("finish gContact")

tEnd = 10
h= 0.0001*0.25
simulationSettings = exu.SimulationSettings()
simulationSettings.linearSolverType = exu.LinearSolverType.EigenSparse
#simulationSettings.solutionSettings.writeSolutionToFile = True
simulationSettings.solutionSettings.writeSolutionToFile = True
simulationSettings.solutionSettings.solutionWritePeriod = 0.02
simulationSettings.solutionSettings.outputPrecision = 5 #make files smaller
simulationSettings.solutionSettings.exportAccelerations = False
simulationSettings.solutionSettings.exportVelocities = False
#simulationSettings.solutionSettings.coordinatesSolutionFileName = 'particles3D.txt'
simulationSettings.displayComputationTime = True
#simulationSettings.displayStatistics = True
simulationSettings.timeIntegration.verboseMode = 1
simulationSettings.parallel.numberOfThreads = 4

simulationSettings.timeIntegration.newton.numericalDifferentiation.forODE2 = False
simulationSettings.timeIntegration.newton.useModifiedNewton = False

SC.visualizationSettings.general.graphicsUpdateInterval=0.5
SC.visualizationSettings.general.circleTiling=200
SC.visualizationSettings.general.drawCoordinateSystem=False
SC.visualizationSettings.loads.show=False
SC.visualizationSettings.bodies.show=False
SC.visualizationSettings.markers.show=False

SC.visualizationSettings.nodes.show=True
SC.visualizationSettings.nodes.drawNodesAsPoint = False
SC.visualizationSettings.nodes.defaultSize = 0 #must not be -1, otherwise uses autocomputed size
SC.visualizationSettings.nodes.tiling = 4

SC.visualizationSettings.window.renderWindowSize=[1200,1200]
#SC.visualizationSettings.window.renderWindowSize=[1024,1400]
SC.visualizationSettings.openGL.multiSampling = 4
#improved OpenGL rendering

SC.visualizationSettings.exportImages.saveImageFileName = "animation/frame"
SC.visualizationSettings.exportImages.saveImageTimeOut=10000 #5000 is too shot sometimes!
if False:
    simulationSettings.solutionSettings.recordImagesInterval = 0.025
    SC.visualizationSettings.general.graphicsUpdateInterval=2


simulate=False
if simulate:
    if useGraphics:
        SC.visualizationSettings.general.autoFitScene = False
        exu.StartRenderer()
        if 'renderState' in exu.sys:
            SC.SetRenderState(exu.sys['renderState'])
        mbs.WaitForUserToContinue()

    #initial gContact statistics
    #simulationSettings.timeIntegration.numberOfSteps = 1
    #simulationSettings.timeIntegration.endTime = h
    #mbs.SolveDynamic(simulationSettings, solverType=exu.DynamicSolverType.ExplicitEuler)
    #print(gContact)

    simulationSettings.timeIntegration.numberOfSteps = int(tEnd/h)
    simulationSettings.timeIntegration.endTime = tEnd
    simulationSettings.timeIntegration.explicitIntegration.computeEndOfStepAccelerations = False #increase performance, accelerations less accurate
    mbs.SolveDynamic(simulationSettings, solverType=exu.DynamicSolverType.ExplicitEuler)
    print(gContact)
    #p = mbs.GetNodeOutput(n, variableType=exu.OutputVariableType.Position)
    #print("pEnd =", p[0], p[1])
    print(gContact)

    if useGraphics:
        SC.WaitForRenderEngineStopFlag()
        exu.StopRenderer() #safely close rendering window!
else:
    SC.visualizationSettings.general.autoFitScene = False
    SC.visualizationSettings.general.graphicsUpdateInterval=0.5

    print('load solution file')
    sol = LoadSolutionFile('particles3DX.txt', safeMode=True)
    #sol = LoadSolutionFile('coordinatesSolution2.txt')
    print('start SolutionViewer')
    mbs.SolutionViewer(sol)