Skip to content

Latest commit

 

History

History
215 lines (169 loc) · 11.4 KB

ANCFcontactCircleTest.rst

File metadata and controls

215 lines (169 loc) · 11.4 KB

ANCFcontactCircleTest.py

You can view and download this file on Github: ANCFcontactCircleTest.py

#+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
# This is an EXUDYN example
#
# Details:  ANCF cable element contact with circle; test model fo ObjectContactCircleCable2D
#
# Author:   Johannes Gerstmayr
# Date:     2019-09-01
#
# Copyright:This file is part of Exudyn. Exudyn is free software. You can redistribute it and/or modify it under the terms of the Exudyn license. See 'LICENSE.txt' for more details.
#
#+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

import exudyn as exu
from exudyn.itemInterface import *

useGraphics = True #without test
#+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
#you can erase the following lines and all exudynTestGlobals related operations if this is not intended to be used as TestModel:
try: #only if called from test suite
    from modelUnitTests import exudynTestGlobals #for globally storing test results
    useGraphics = exudynTestGlobals.useGraphics
except:
    class ExudynTestGlobals:
        pass
    exudynTestGlobals = ExudynTestGlobals()
#+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

SC = exu.SystemContainer()
mbs = SC.AddSystem()

#background
rect = [-2,-2,4,2] #xmin,ymin,xmax,ymax
background0 = {'type':'Line', 'color':[0.1,0.1,0.8,1], 'data':[rect[0],rect[1],0, rect[2],rect[1],0, rect[2],rect[3],0, rect[0],rect[3],0, rect[0],rect[1],0]} #background
background1 = {'type':'Line', 'color':[0.1,0.1,0.8,1], 'data':[0,-1,0, 2,-1,0]} #background
oGround=mbs.AddObject(ObjectGround(referencePosition= [0,0,0], visualization=VObjectGround(graphicsData= [background0, background1])))

#+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
#cable:
mypi = 3.141592653589793

L=2                     # length of ANCF element in m
#L=mypi                 # length of ANCF element in m
E=2.07e11               # Young's modulus of ANCF element in N/m^2
rho=7800                # density of ANCF element in kg/m^3
b=0.001                 # width of rectangular ANCF element in m
h=0.001                 # height of rectangular ANCF element in m
A=b*h                   # cross sectional area of ANCF element in m^2
I=b*h**3/12             # second moment of area of ANCF element in m^4
f=3*E*I/L**2            # tip load applied to ANCF element in N

exu.Print("load f="+str(f))
exu.Print("EI="+str(E*I))

nGround = mbs.AddNode(NodePointGround(referenceCoordinates=[0,0,0])) #ground node for coordinate constraint
mGround = mbs.AddMarker(MarkerNodeCoordinate(nodeNumber = nGround, coordinate=0)) #Ground node ==> no action

cableList=[]        #for cable elements
nodeList=[]  #for nodes of cable
markerList=[]       #for nodes
nc0 = mbs.AddNode(Point2DS1(referenceCoordinates=[0,0,1,0]))
nodeList+=[nc0]
nElements = 8 #8 original in test
lElem = L / nElements
for i in range(nElements):
    nLast = mbs.AddNode(Point2DS1(referenceCoordinates=[lElem*(i+1),0,1,0]))
    nodeList+=[nLast]
    elem=mbs.AddObject(Cable2D(physicsLength=lElem, physicsMassPerLength=rho*A,
                               physicsBendingStiffness=E*I, physicsAxialStiffness=E*A,
                               nodeNumbers=[int(nc0)+i,int(nc0)+i+1]))
    cableList+=[elem]

mANCF0 = mbs.AddMarker(MarkerNodeCoordinate(nodeNumber = nc0, coordinate=0))
mANCF1 = mbs.AddMarker(MarkerNodeCoordinate(nodeNumber = nc0, coordinate=1))
mANCF2 = mbs.AddMarker(MarkerNodeCoordinate(nodeNumber = nc0, coordinate=3))

mbs.AddObject(CoordinateConstraint(markerNumbers=[mGround,mANCF0]))
mbs.AddObject(CoordinateConstraint(markerNumbers=[mGround,mANCF1]))
mbs.AddObject(CoordinateConstraint(markerNumbers=[mGround,mANCF2]))

#add gravity:
markerList=[]
for i in range(len(nodeList)):
    m = mbs.AddMarker(MarkerNodePosition(nodeNumber=nodeList[i]))
    markerList+=[m]
    fact = 1 #add (half) weight of two elements to node
    if (i==0) | (i==len(nodeList)-1): fact = 0.5 # first and last node only weighted half
    mbs.AddLoad(Force(markerNumber = m, loadVector = [0, -40*2*rho*A*fact*lElem, 0])) #will be changed in load steps

#mANCFend = mbs.AddMarker(MarkerNodeCoordinate(nodeNumber = nodeList[-1], coordinate=1)) #last marker
#mbs.AddObject(CoordinateConstraint(markerNumbers=[mGround,mANCFend]))

#mGroundTip = mbs.AddMarker(MarkerBodyPosition(bodyNumber = oGround, localPosition=[L,0,0]))
#mbs.AddObject(CartesianSpringDamper(markerNumbers=[mGroundTip,markerList[-1]], stiffness=[10,10,10], damping=[0.1,0.1,0.1]))

#mGroundTip2 = mbs.AddMarker(MarkerBodyPosition(bodyNumber = oGround, localPosition=[L,0.2,0]))
#mbs.AddObject(SpringDamper(markerNumbers=[mGroundTip2,markerList[-1]], stiffness=0.1, referenceLength=0.2))

#mANCFLast = mbs.AddMarker(MarkerNodePosition(nodeNumber=nLast)) #force
#mbs.AddLoad(Force(markerNumber = mANCFLast, loadVector = [0, -1e8, 0])) #will be changed in load steps

#mANCFrigid = mbs.AddMarker(MarkerBodyRigid(bodyNumber=elem, localPosition=[lElem,0,0])) #local position L = beam tip
#mbs.AddLoad(Torque(markerNumber = mANCFrigid, loadVector = [0, 0, E*I*1*mypi]))

#mANCFnode = mbs.AddMarker(MarkerNodeRigid(nodeNumber=nLast)) #local position L = beam tip
#mbs.AddLoad(Torque(markerNumber = mANCFnode, loadVector = [0, 0, 3*E*I*1*mypi]))

cStiffness = 1e3
cDamping = 0.02*cStiffness
useContact = False
if useContact:
    tipContact = False
    if tipContact:
        nodeData = mbs.AddNode(NodeGenericData(initialCoordinates=[0],numberOfDataCoordinates=1))
        mbs.AddObject(ObjectContactCoordinate(markerNumbers=[mGround, mANCFend],nodeNumber = nodeData, contactStiffness = cStiffness, contactDamping=0*cDamping, offset = -0.8))
    else:
        for i in range(len(nodeList)):
            mNC = mbs.AddMarker(MarkerNodeCoordinate(nodeNumber = nodeList[i], coordinate=1))
            nodeData = mbs.AddNode(NodeGenericData(initialCoordinates=[1],numberOfDataCoordinates=1)) #start with gap!
            mbs.AddObject(ObjectContactCoordinate(markerNumbers=[mGround, mNC], nodeNumber = nodeData, contactStiffness = cStiffness, contactDamping=0*cDamping, offset = -1))

nSegments = 4 #number of contact segments; must be consistent between nodedata and contact element
initialGapList = [0.1]*nSegments #initial gap of 0.1

mGroundCircle = mbs.AddMarker(MarkerBodyPosition(bodyNumber = oGround, localPosition=[0.75*L,-0.5,0]))
mGroundCircle2 = mbs.AddMarker(MarkerBodyPosition(bodyNumber = oGround, localPosition=[0.25*L,-0.15,0]))

#mCable = mbs.AddMarker(MarkerBodyCable2DShape(bodyNumber=elem, numberOfSegments = nSegments))
#nodeDataContactCable = mbs.AddNode(NodeGenericData(initialCoordinates=initialGapList,numberOfDataCoordinates=nSegments))
#mbs.AddObject(ObjectContactCircleCable2D(markerNumbers=[mGroundCircle, mCable], nodeNumber = nodeDataContactCable,
#                                         numberOfContactSegments=nSegments, contactStiffness = cStiffness, contactDamping=cDamping,
#                                         circleRadius = 0.4, offset = 0))
for i in range(len(cableList)):
    mCable = mbs.AddMarker(MarkerBodyCable2DShape(bodyNumber=cableList[i], numberOfSegments = nSegments))
    nodeDataContactCable = mbs.AddNode(NodeGenericData(initialCoordinates=initialGapList,numberOfDataCoordinates=nSegments))
    mbs.AddObject(ObjectContactCircleCable2D(markerNumbers=[mGroundCircle, mCable], nodeNumber = nodeDataContactCable,
                                             numberOfContactSegments=nSegments, contactStiffness = cStiffness, contactDamping=0*cDamping,
                                             circleRadius = 0.2, offset = 0))
    nodeDataContactCable = mbs.AddNode(NodeGenericData(initialCoordinates=initialGapList,numberOfDataCoordinates=nSegments))
    mbs.AddObject(ObjectContactCircleCable2D(markerNumbers=[mGroundCircle2, mCable], nodeNumber = nodeDataContactCable,
                                             numberOfContactSegments=nSegments, contactStiffness = cStiffness, contactDamping=0*cDamping,
                                             circleRadius = 0.1, offset = 0))


#mbs.systemData.Info()

mbs.Assemble()
#exu.Print(mbs)

simulationSettings = exu.SimulationSettings() #takes currently set values or default values

simulationSettings.solutionSettings.writeSolutionToFile = True
#simulationSettings.solutionSettings.outputPrecision = 4
simulationSettings.displayComputationTime = False

simulationSettings.displayStatistics = False

#SC.visualizationSettings.nodes.showNumbers = True
SC.visualizationSettings.bodies.showNumbers = False
#SC.visualizationSettings.connectors.showNumbers = True
SC.visualizationSettings.nodes.defaultSize = 0.01
SC.visualizationSettings.markers.defaultSize = 0.01
SC.visualizationSettings.connectors.defaultSize = 0.01
SC.visualizationSettings.contact.contactPointsDefaultSize = 0.005
SC.visualizationSettings.connectors.showContact = 1

simulationSettings.solutionSettings.solutionInformation = "ANCF cable with imposed curvature or applied tip force/torque"

simulationSettings.staticSolver.newton.numericalDifferentiation.relativeEpsilon = 1e-10 #can be quite small; WHY?
simulationSettings.staticSolver.verboseMode = 0 #otherwise, load steps are shown ...
simulationSettings.staticSolver.numberOfLoadSteps  = 40
simulationSettings.staticSolver.loadStepGeometric = True;
simulationSettings.staticSolver.loadStepGeometricRange = 1e4;
simulationSettings.staticSolver.adaptiveStep = False

simulationSettings.staticSolver.newton.relativeTolerance = 1e-7 #10000
simulationSettings.staticSolver.newton.absoluteTolerance = 1e-10
simulationSettings.staticSolver.newton.maxIterations = 30 #50 for bending into circle

simulationSettings.staticSolver.discontinuous.iterationTolerance = 1
simulationSettings.staticSolver.stabilizerODE2term = 2 #may only act on position degrees of freedom

if useGraphics:
    simulationSettings.staticSolver.verboseMode = 1 #otherwise, load steps are shown ...
    simulationSettings.staticSolver.verboseModeFile = 0 #otherwise, load steps are shown ...
    simulationSettings.displayStatistics = True

    exu.StartRenderer()

#mbs.WaitForUserToContinue()
mbs.SolveStatic(simulationSettings) #183 Newton iterations, 0.114 seconds

sol = mbs.systemData.GetODE2Coordinates()
n = len(sol)
exu.Print('tip displacement: x='+str(sol[n-4])+', y='+str(sol[n-3]))

if useGraphics:
    SC.WaitForRenderEngineStopFlag()
    exu.StopRenderer() #safely close rendering window!

exudynTestGlobals.testError = sol[n-3] - (-0.4842698420787613) #-0.4842698420787613 ; 2021-05-07 (deactivated StaticSolveOldSolver):-0.4842656133238705  #2019-12-17(relTol=1e-7 / up to 7 digits accurate): -0.4842656547442095;  2019-11-22: (-0.4844812763485709) (with relTol=1e-5);  y-displacement
exudynTestGlobals.testResult = sol[n-3]