Skip to content

Latest commit

 

History

History
443 lines (350 loc) · 24.3 KB

openVRengine.rst

File metadata and controls

443 lines (350 loc) · 24.3 KB

openVRengine.py

You can view and download this file on Github: openVRengine.py

#+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
# This is an EXUDYN example
#
# Details:  test creating piston engine with variable number of pistons and piston angles;
#           possibility to interact with openVR
#
# Author:   Johannes Gerstmayr
# Date:     2023-01-17
#
# Copyright:This file is part of Exudyn. Exudyn is free software. You can redistribute it and/or modify it under the terms of the Exudyn license. See 'LICENSE.txt' for more details.
#
#+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++


import exudyn as exu
from exudyn.utilities import * #includes itemInterface and rigidBodyUtilities
import exudyn.graphics as graphics #only import if it does not conflict
from math import sin, cos, asin, acos, pi, exp, log, tan, atan, radians
from exudyn.interactive import InteractiveDialog


omegaDrive = 4*pi*0.5
tEnd = 3600
nodeType = exu.NodeType.RotationEulerParameters
fixedSpeed = False #if false, the speed is given only for first 1 second

# nodeType = exu.NodeType.RotationRxyz
#nodeType = exu.NodeType.RotationRotationVector

# import matplotlib.pyplot as plt
# plt.close('all')
zOffAdd = -0.5

class EngineParameters:
    def __init__(self, crankAnglesDegrees=[], pistonAnglesDegrees=[]):
        #parameters in m, s, kg, rad, ...
        self.crankAnglesDegrees = crankAnglesDegrees
        if pistonAnglesDegrees == []:
            self.pistonAnglesDegrees = list(0*np.array(crankAnglesDegrees))
        else:
            self.pistonAnglesDegrees = pistonAnglesDegrees

        crankAngles = pi/180*np.array(crankAnglesDegrees)
        self.crankAngles = list(crankAngles)

        pistonAngles = pi/180*np.array(self.pistonAnglesDegrees)
        self.pistonAngles = list(pistonAngles)

        densitySteel = 7850
        #kinematics & inertia & drawing
        fZ = 1#0.2
        self.pistonDistance = 0.08
        self.pistonMass = 0.5
        self.pistonLength = 0.05
        self.pistonRadius = 0.02

        self.conrodLength = 0.1 #X
        self.conrodHeight = 0.02*fZ#Y
        self.conrodWidth = 0.02*fZ #Z
        self.conrodRadius = 0.012*fZ #Z

        self.crankArmLength = 0.04      #X
        self.crankArmHeight = 0.016     #Y
        self.crankArmWidth = 0.01*fZ       #Z width of arm
        self.crankBearingWidth = 0.012*fZ   #Z
        self.crankBearingRadius = 0.01

        self.conrodCrankCylLength = 0.024*fZ  #Z; length of cylinder (bearing conrod-crank)
        self.conrodCrankCylRadius = 0.008 #radius of cylinder (bearing conrod-crank)

        self.pistonDistance = self.crankBearingWidth + 2*self.crankArmWidth + self.conrodCrankCylLength #Z distance

        self.inertiaConrod = InertiaCuboid(densitySteel, sideLengths=[self.conrodLength, self.conrodHeight, self.conrodWidth])

        eL = self.Length()
        #last bearing:
        densitySteel2 = densitySteel
        self.inertiaCrank = InertiaCylinder(densitySteel2, self.crankBearingWidth, self.crankBearingRadius, axis=2).Translated([0,0,0.5*eL-0.5*self.crankBearingWidth])



        for cnt, angle in enumerate(self.crankAngles):
            A = RotationMatrixZ(angle)
            zOff = -0.5*eL + cnt*self.pistonDistance
            arm = InertiaCuboid(densitySteel2, sideLengths=[self.crankArmLength, self.crankArmHeight, self.crankArmWidth])
            cylCrank = InertiaCylinder(densitySteel2, self.crankBearingWidth, self.crankBearingRadius, axis=2)
            cylConrod = InertiaCylinder(densitySteel2, self.conrodCrankCylLength, self.conrodCrankCylRadius, axis=2)
            #add inertias:
            self.inertiaCrank += cylCrank.Translated([0,0,zOff+self.crankBearingWidth*0.5])
            self.inertiaCrank += arm.Rotated(A).Translated(A@[self.crankArmLength*0.5,0,zOff+self.crankBearingWidth+self.crankArmWidth*0.5])
            self.inertiaCrank += cylConrod.Translated(A@[self.crankArmLength,0,zOff+self.crankBearingWidth+self.crankArmWidth+self.conrodCrankCylLength*0.5])
            self.inertiaCrank += arm.Rotated(A).Translated(A@[self.crankArmLength*0.5,0,zOff+self.crankBearingWidth+self.crankArmWidth*1.5+self.conrodCrankCylLength])

        # self.inertiaCrank = InertiaCylinder(1e-8*densitySteel, length=self.pistonLength,
        #                                      outerRadius=self.pistonRadius, innerRadius=0.5*self.pistonRadius, axis=2)

        self.inertiaPiston = InertiaCylinder(densitySteel, length=self.pistonLength,
                                             outerRadius=self.pistonRadius, innerRadius=0.5*self.pistonRadius, axis=0)

        #self.inertiaCrank.com = [0,0,0]
        # print('crank COM=',np.array(self.inertiaCrank.com).round(8))
        # print('inertiaCrank=',self.inertiaCrank)
        # print('inertiaConrod=',self.inertiaConrod)
        # print('inertiaPiston=',self.inertiaPiston)

    def Length(self):
        return self.pistonDistance*len(self.crankAngles) + self.crankBearingWidth

    def MaxDimX(self):
        return self.crankArmLength + self.conrodLength + self.pistonLength

def ComputeSliderCrank(angleCrank, anglePiston, l1, l2):
    phi1 = angleCrank-anglePiston
    h = l1*sin(phi1) #height of crank-conrod bearing
    phi2 = asin(h/l2) #angle of conrod in 2D slider-crank, corotated with piston rotation
    angleConrod = anglePiston-phi2
    Acr = RotationMatrixZ(angleConrod)
    dp = l1*cos(phi1) + l2*cos(phi2) #distance of piston from crank rotation axis
    return [phi1,phi2, angleConrod, Acr, dp]


#this function (re-)creates gear geometry
def CreateEngine(P):

    colorCrank = graphics.color.grey
    colorConrod = graphics.color.dodgerblue
    colorPiston = graphics.color.brown[0:3]+[0.5]
    showJoints = True

    gravity = [0,-9.81*0,0]
    eL = P.Length()
    oGround=mbs.AddObject(ObjectGround(referencePosition= [0,0,zOffAdd], visualization=VObjectGround(graphicsData= [])))
    nGround=mbs.AddNode(NodePointGround(referenceCoordinates = [0,0,zOffAdd]))

    gEngine = [graphics.Brick(centerPoint=[0,0,0], size=[P.MaxDimX()*2, P.MaxDimX(), eL*1.2],
                                          color=[0.6,0.6,0.6,0.1], addEdges=True,
                                          edgeColor = [0.8,0.8,0.8,0.3], addFaces=False)]
    gEngine = [] #no block
    #oEngine=mbs.AddObject(ObjectGround(referencePosition= [0,0,0], visualization=VObjectGround(graphicsData= gEngine)))
    [nEngine, oEngine] = AddRigidBody(mbs, InertiaCuboid(1000, sideLengths=[1,1,1]), #dummy engine inertia
                                      nodeType = nodeType,
                                      position=[0,0,zOffAdd],
                                      graphicsDataList = gEngine
                                      )

    mGround = mbs.AddMarker(MarkerBodyRigid(bodyNumber=oGround))
    mEngine = mbs.AddMarker(MarkerBodyRigid(bodyNumber=oEngine))
    sEngineForce = 0
    oEngineJoint = 0
    sEngineTorque  = 0
    oEngineJoint = mbs.AddObject(GenericJoint(markerNumbers=[mEngine, mGround], constrainedAxes=[1,1,1, 1,1,1],
                                    visualization=VGenericJoint(show=False)))
    sEngineForce = mbs.AddSensor(SensorObject(objectNumber=oEngineJoint, storeInternal=True,
                                              outputVariableType=exu.OutputVariableType.ForceLocal))
    sEngineTorque = mbs.AddSensor(SensorObject(objectNumber=oEngineJoint, storeInternal=True,
                                              outputVariableType=exu.OutputVariableType.TorqueLocal))

    bConrodList = []
    bPistonList = []
    gCrank = []
    for cnt, angleCrank in enumerate(P.crankAngles):
        anglePiston = P.pistonAngles[cnt]
        Ac = RotationMatrixZ(angleCrank)
        Ap = RotationMatrixZ(anglePiston)
        [phi1,phi2, angleConrod, Acr, dp] = ComputeSliderCrank(angleCrank, anglePiston, P.crankArmLength, P.conrodLength)

        zOff = -0.5*eL + cnt*P.pistonDistance + zOffAdd
        #zOff = 0
        #crank bearing
        zAdd = 0
        if cnt>0: zAdd = P.crankArmWidth
        gCrank += [graphics.Cylinder(pAxis=[0,0,zOff-zAdd], vAxis=[0,0,P.crankBearingWidth+P.crankArmWidth+zAdd],
                                        radius=P.crankBearingRadius, color=graphics.color.red)]
        #arm1
        arm1 = graphics.Brick([P.crankArmLength*0.5,0,zOff+P.crankArmWidth*0.5+P.crankBearingWidth],
                                              size=[P.crankArmLength,P.crankArmHeight,P.crankArmWidth], color=colorCrank)
        gCrank += [graphics.Move(arm1, [0,0,0], Ac)]
        #conrod bearing
        gCrank += [graphics.Cylinder(pAxis=Ac@[P.crankArmLength,0,zOff+P.crankBearingWidth+P.crankArmWidth*0],
                                       vAxis=[0,0,P.conrodCrankCylLength+2*P.crankArmWidth], radius=P.conrodCrankCylRadius, color=colorCrank)]

        #arm2
        arm2 = graphics.Brick([P.crankArmLength*0.5,0,zOff+P.crankArmWidth*1.5+P.crankBearingWidth+P.conrodCrankCylLength],
                                              size=[P.crankArmLength,P.crankArmHeight,P.crankArmWidth],
                                              color=colorCrank)
        gCrank += [graphics.Move(arm2, [0,0,0], Ac)]

        if cnt == len(P.crankAngles)-1:
            gCrank += [graphics.Cylinder(pAxis=[0,0,zOff+P.crankArmWidth+P.crankBearingWidth+P.conrodCrankCylLength], vAxis=[0,0,P.crankBearingWidth+P.crankArmWidth],
                                            radius=P.crankBearingRadius, color=graphics.color.red)]

        #++++++++++++++++++++++++++++++++++++++
        #conrod
        gConrod = [ graphics.RigidLink(p0=[-0.5*P.conrodLength, 0, 0], p1=[0.5*P.conrodLength,0,0], axis0= [0,0,1], axis1= [0,0,1],
                                           radius= [P.conrodRadius]*2,
                                           thickness= P.conrodHeight, width=[P.conrodWidth]*2, color= colorConrod, nTiles= 16)]

        [nConrod, bConrod] = AddRigidBody(mbs, P.inertiaConrod,
                                          nodeType = nodeType,
                                        position=Ac@[P.crankArmLength,0,0] + Acr@[0.5*P.conrodLength,0,
                                                  zOff+P.crankArmWidth+P.crankBearingWidth+0.5*P.conrodCrankCylLength],
                                        # angularVelocity=[0,0,0],
                                        rotationMatrix=Acr,
                                        gravity = gravity,
                                        graphicsDataList = gConrod
                                        )
        bConrodList += [bConrod]
        #++++++++++++++++++++++++++++++++++++++
        #piston
        gPiston = [graphics.Cylinder(pAxis=[-P.conrodRadius*0.5,0,0],
                                         vAxis=[P.pistonLength,0,0], radius=P.pistonRadius, color=colorPiston)]

        [nPiston, bPiston] = AddRigidBody(mbs, P.inertiaPiston,
                                          nodeType = nodeType,
                                        # position=Ap@[P.crankArmLength + P.conrodLength,0,
                                        #           zOff+P.crankArmWidth+P.crankBearingWidth+0.5*P.conrodCrankCylLength],
                                        position=Ap@[dp,0,
                                                  zOff+P.crankArmWidth+P.crankBearingWidth+0.5*P.conrodCrankCylLength],
                                        # angularVelocity=[0,0,0],
                                        rotationMatrix=Ap,
                                        gravity = gravity,
                                        graphicsDataList = gPiston
                                        )
        bPistonList += [bPiston]

    [nCrank, bCrank] = AddRigidBody(mbs, P.inertiaCrank,
                                    nodeType = nodeType,
                                    position=[0,0,0],
                                    #angularVelocity=[0,0,omega0],
                                    gravity = gravity,
                                    graphicsDataList = gCrank
                                    )

    sCrankAngVel = mbs.AddSensor(SensorNode(nodeNumber=nCrank, storeInternal=True,
                                              outputVariableType=exu.OutputVariableType.AngularVelocity))

    #++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
    #JOINTS:
    [oJointCrank, mBody0Crank, mBody1Crank] = AddRevoluteJoint(mbs, oEngine, bCrank, point=[0,0,-0.5*eL], axis=[0,0,1], showJoint=showJoints,
                                                axisRadius=P.crankBearingRadius*1.2, axisLength=P.crankBearingWidth*0.8)

    for cnt, angleCrank in enumerate(P.crankAngles):
        anglePiston = P.pistonAngles[cnt]
        Ac = RotationMatrixZ(angleCrank)
        Ap = RotationMatrixZ(anglePiston)
        [phi1,phi2, angleConrod, Acr, dp] = ComputeSliderCrank(angleCrank, anglePiston, P.crankArmLength, P.conrodLength)

        zOff = -0.5*eL + cnt*P.pistonDistance
        #zOff = 0

        [oJointCC, mBody0CC, mBody1CC] = AddRevoluteJoint(mbs, bCrank, bConrodList[cnt],
                                                          point=Ac@[P.crankArmLength,0,zOff + P.crankBearingWidth+P.crankArmWidth+0.5*P.conrodCrankCylLength],
                                                          axis=[0,0,1], showJoint=showJoints,
                                                          axisRadius=P.crankBearingRadius*1.3, axisLength=P.crankBearingWidth*0.8)

        #pPiston = A@[P.crankArmLength+P.conrodLength,0,zOff + P.crankBearingWidth+P.crankArmWidth+0.5*P.conrodCrankCylLength]
        pPiston = Ap@[dp,0,zOff + P.crankBearingWidth+P.crankArmWidth+0.5*P.conrodCrankCylLength]
        [oJointCP, mBody0CP, mBody1CP] = AddRevoluteJoint(mbs, bConrodList[cnt], bPistonList[cnt],
                                                          point=pPiston,
                                                          axis=[0,0,1], showJoint=showJoints,
                                                          axisRadius=P.crankBearingRadius*1.3, axisLength=P.crankBearingWidth*0.8)

        # AddPrismaticJoint(mbs, oEngine, bPistonList[cnt],
        #                                                 point=pPiston,
        #                                                 axis=A@[1,0,0], showJoint=showJoints,
        #                                                 axisRadius=P.crankBearingRadius*1.3, axisLength=P.crankBearingWidth*0.8)
        mEngine = mbs.AddMarker(MarkerBodyRigid(bodyNumber=oEngine, localPosition=pPiston))
        mPiston = mbs.AddMarker(MarkerBodyRigid(bodyNumber=bPistonList[cnt], localPosition=[0,0,0]))
        mbs.AddObject(GenericJoint(markerNumbers=[mPiston, mEngine], constrainedAxes=[0,1,0, 0,0,1],
                                   # rotationMarker0=A.T,
                                   rotationMarker1=Ap,
                                   visualization=VGenericJoint(show=False, axesRadius=P.conrodRadius*1.4,axesLength=0.05)))

    #++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
    #DRIVE:
    def UFoffset(mbs, t, itemNumber, lOffset):
        return 0

    def UFoffset_t(mbs, t, itemNumber, lOffset): #time derivative of UFoffset
        return SmoothStep(t, 0, 0.5, 0, omegaDrive)

    mCrankRotation = mbs.AddMarker(MarkerNodeRotationCoordinate(nodeNumber=nCrank, rotationCoordinate=2))
    mNodeEngine = mbs.AddMarker(MarkerNodeRotationCoordinate(nodeNumber=nEngine, rotationCoordinate=2))
    oRotationConstraint = mbs.AddObject(CoordinateConstraint(markerNumbers=[mNodeEngine, mCrankRotation], velocityLevel=True,
                                        offsetUserFunction=UFoffset,
                                        offsetUserFunction_t=UFoffset_t,
                                        visualization=VCoordinateConstraint(show=False)))

    return [oEngine, oEngineJoint, sEngineForce, sEngineTorque, sCrankAngVel, oRotationConstraint, nCrank, bCrank]

engines = []
engines+=[EngineParameters([0])]                                           #R1
engines+=[EngineParameters([0,180])]                                       #R2
engines+=[EngineParameters([0,180,180,0])]                                 #R4 straight-four engine, Reihen-4-Zylinder
engines+=[EngineParameters([0,90,270,180])]                                #R4 in different configuration
engines+=[EngineParameters([0,180,180,0],[0,180,180,0])]                   #Boxer 4-piston perfect mass balancing

engines+=[EngineParameters([0,120,240])]                                   #R3
engines+=[EngineParameters(list(np.arange(0,5)*144))]                      #R5
engines+=[EngineParameters([0,120,240,240,120,0])]                         #R6
engines+=[EngineParameters([0,0,120,120,240,240],[-30,30,-30,30,-30,30])]  #V6
engines+=[EngineParameters([0,0,120,120,240,240,240,240,120,120,0,0],[-30,30,-30,30,-30,30,30,-30,30,-30,30,-30])] #V12

engines+=[EngineParameters([0,90,180,270,270,180,90,360])]                  #R8
engines+=[EngineParameters([0,0,90,90,270,270,180,180], [-45,45,-45,45, 45,-45,45,-45])] #V8

# n=12
# a=list(np.arange(0,n)*30)
# b=list(np.arange(n-1,-1,-1)*30)
# #engines+=[EngineParameters(a+a,b+b)

#+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
#
engines=[EngineParameters([0,90,270,180], [90]*4)]
#engines=[EngineParameters([0,0,120,120,240,240,240,240,120,120,0,0],[60,120,60,120,60,120,120,60,120,60,120,60])] #V12

for engine in engines:

    SC = exu.SystemContainer()
    mbs = SC.AddSystem()

    [oEngine, oEngineJoint, sEngineForce, sEngineTorque, sCrankAngVel, oRotationConstraint,
     nCrank, bCrank] = CreateEngine(engine)

    d = 2.4     #box size
    h = 0.5*d #box half size
    w = d
    gDataList = []
    gDataList += [graphics.CheckerBoard(point=[0,0,-h], normal=[0,0,1], size=2*d, size2=d, nTiles=12*2, nTiles2=12, color=graphics.color.grey)]
    gDataList += [graphics.CheckerBoard(point=[-w,0,0], normal=[ 1,0,0], size=d, nTiles=12, color=graphics.color.lightgrey)]
    gDataList += [graphics.CheckerBoard(point=[ w,0,0], normal=[-1,0,0], size=d, nTiles=12, color=graphics.color.lightgrey)]
    gDataList += [graphics.CheckerBoard(point=[0,-h,0], normal=[0,-1,0], size=2*d, size2=d, nTiles=12*2, nTiles2=12, color=graphics.color.dodgerblue)]
    gDataList += [graphics.CheckerBoard(point=[0, h,0], normal=[0, 1,0], size=2*d, size2=d, nTiles=1, color=[0.8,0.8,1,1])]#, alternatingColor=[0.8,0.8,1,1])]
    # gDataList += [graphics.CheckerBoard(point=[0, 0,h], normal=[0, 0,-1], size=d, nTiles=1, color=[0.8,0.8,0.8,0.9])]

    oGround=mbs.AddObject(ObjectGround(referencePosition= [0,0,0],
                                   visualization=VObjectGround(graphicsData=gDataList)))


    def PreStepUF(mbs, t):
        u = mbs.systemData.GetODE2Coordinates()

        if not fixedSpeed and t >= 1: #at this point, the mechanism runs freely
            mbs.SetObjectParameter(oRotationConstraint, 'activeConnector', False)

        #mbs.systemData.SetODE2Coordinates(u)
        return True

    mbs.SetPreStepUserFunction(PreStepUF)


    mbs.Assemble()

    stepSize = 0.002
    simulationSettings = exu.SimulationSettings() #takes currently set values or default values

    simulationSettings.timeIntegration.numberOfSteps = int(tEnd/stepSize)
    simulationSettings.timeIntegration.endTime = tEnd
    # simulationSettings.timeIntegration.newton.relativeTolerance = 1e-8*0.01
    # simulationSettings.timeIntegration.newton.absoluteTolerance = 1e-10*0.01
    simulationSettings.timeIntegration.verboseMode = 1

    # simulationSettings.timeIntegration.simulateInRealtime = True

    simulationSettings.solutionSettings.solutionWritePeriod=0.01
    simulationSettings.solutionSettings.sensorsWritePeriod = stepSize*10
    simulationSettings.solutionSettings.writeSolutionToFile = False
    #simulationSettings.solutionSettings.writeInitialValues = False #otherwise values are duplicated
    #simulationSettings.solutionSettings.coordinatesSolutionFileName = 'solution/coordinatesSolution.txt'

    simulationSettings.timeIntegration.generalizedAlpha.computeInitialAccelerations = False

    simulationSettings.timeIntegration.generalizedAlpha.lieGroupAddTangentOperator = False
    #simulationSettings.displayStatistics = True
    # simulationSettings.displayComputationTime = True
    simulationSettings.linearSolverType=exu.LinearSolverType.EigenSparse

    #SC.visualizationSettings.nodes.defaultSize = 0.05

    simulationSettings.solutionSettings.solutionInformation = "Engine"

    SC.visualizationSettings.general.graphicsUpdateInterval = 0.01
    #SC.visualizationSettings.general.drawWorldBasis = True
    #SC.visualizationSettings.general.worldBasisSize = 0.1

    SC.visualizationSettings.markers.show = False
    SC.visualizationSettings.loads.show = False
    SC.visualizationSettings.nodes.show = False
    SC.visualizationSettings.connectors.show = False

    SC.visualizationSettings.openGL.multiSampling = 4
    SC.visualizationSettings.openGL.shadow = 0.3 #set to 0, if your graphics card cannot handle this!
    SC.visualizationSettings.openGL.lineWidth = 3
    SC.visualizationSettings.openGL.light0position = [0.25,1,3,0]

    #++++++++++++++++++++++++++++++++
    #openVR:
    SC.visualizationSettings.general.drawCoordinateSystem = False
    #good for openVR
    SC.visualizationSettings.general.graphicsUpdateInterval = 0.005 #small enough to get large enough fps
    simulationSettings.timeIntegration.simulateInRealtime = True

    useOpenVR = False #set this true for openVR to run!!!
    SC.visualizationSettings.window.renderWindowSize=[1176, 1320] # this needs to fit to your VR HMD (Head Mounted Display) settings (will show in console when openVR is started and openVR.logLevel is large enough!)
    if useOpenVR:
        SC.visualizationSettings.openGL.initialZoom = 1# 0.4*20 #0.4*max scene size
        #SC.visualizationSettings.openGL.initialCenterPoint = [0,0,2]
        SC.visualizationSettings.general.autoFitScene = False
        SC.visualizationSettings.window.limitWindowToScreenSize = False #this allows a larger window size than your monitor can display in case!
        SC.visualizationSettings.window.startupTimeout = 100000 #if steam / VRidge, etc. not found
        SC.visualizationSettings.interactive.openVR.enable = True
        SC.visualizationSettings.interactive.lockModelView = True #lock rotation/translation/zoom of model
        SC.visualizationSettings.interactive.openVR.logLevel = 3
        SC.visualizationSettings.interactive.openVR.actionManifestFileName = "C:/DATA/cpp/DocumentationAndInformation/openVR/hellovr_actions.json"

    #%%+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++


    SC.visualizationSettings.general.autoFitScene = False #use loaded render state
    exu.StartRenderer()
    cws = SC.GetRenderState()['currentWindowSize']
    print('window size=', cws, '(check that this is according to needs of Head Mounted Display)')
    # if 'renderState' in exu.sys:
    #     SC.SetRenderState(exu.sys[ 'renderState' ])

    mbs.SolveDynamic(simulationSettings)

    exu.StopRenderer() #safely close rendering window!