Skip to content

Latest commit

 

History

History
252 lines (197 loc) · 11.5 KB

simulateInteractively.rst

File metadata and controls

252 lines (197 loc) · 11.5 KB

simulateInteractively.py

You can view and download this file on Github: simulateInteractively.py

#+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
# This is an EXUDYN example
#
# Details:  Nonlinear oscillations interactive simulation
#
# Author:   Johannes Gerstmayr
# Date:     2020-01-16
#
# Copyright:This file is part of Exudyn. Exudyn is free software. You can redistribute it and/or modify it under the terms of the Exudyn license. See 'LICENSE.txt' for more details.
#
#+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

import exudyn as exu
from exudyn.itemInterface import *
from exudyn.graphicsDataUtilities import *
import matplotlib.pyplot as plt
from exudyn.interactive import InteractiveDialog

import numpy as np
from math import sin, cos, pi

import time #for sleep()
SC = exu.SystemContainer()
mbs = SC.AddSystem()

#%%+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
#create model for linear and nonlinear oscillator:
L=0.5
mass = 1.6          #mass in kg
spring = 4000       #stiffness of spring-damper in N/m
damper = 20         #damping constant in N/(m/s)
load0 = 80

omega0=np.sqrt(spring/mass)
f0 = 0.*omega0/(2*np.pi)
f1 = 1.*omega0/(2*np.pi)

print('resonance frequency = '+str(omega0/(2*pi)))
tEnd = 200     #end time of simulation
steps = 20000  #number of steps

omegaInit = omega0*0.5
mbs.variables['mode'] = 0           #0=linear, 1=cubic nonlinear
mbs.variables['frequency'] = omegaInit/(2*pi)  #excitation frequency changed by user
#mbs.variables['omega'] = omegaInit  #excitation, changed in simFunction
mbs.variables['phi'] = 0            #excitation phase, used to get smooth excitations
mbs.variables['stiffness'] = spring
mbs.variables['damping'] = damper



#user function for spring force
def springForce(mbs, t, itemIndex, u, v, k, d, offset): #changed 2023-01-21:, mu, muPropZone):
    k=mbs.variables['stiffness']
    d=mbs.variables['damping']
    if mbs.variables['mode'] == 0:
        return k*u + v*d
    else:
        #return 0.1*k*u+k*u**3+v*d
        return k*u+1000*k*u**3+v*d #breaks down at 13.40Hz

mode = 0 #0...forward, 1...backward

# #linear frequency sweep in time interval [0, t1] and frequency interval [f0,f1];
# def Sweep(t, t1, f0, f1):
#     k = (f1-f0)/t1
#     return np.sin(2*np.pi*(f0+k*0.5*t)*t) #take care of factor 0.5 in k*0.5*t, in order to obtain correct frequencies!!!

# #user function for load
# def userLoad(mbs, t, load):
#     #return load*np.sin(0.5*omega0*t) #gives resonance
#     #print(t)
#     if mode==0:
#         return load*Sweep(t, tEnd, f0, f1)
#     else:
#         return load*Sweep(t, tEnd, f1, f0) #backward sweep

#user function for load
def userLoad(mbs, t, load):
    #return load*sin(t*mbs.variables['frequency']*2*pi+mbs.variables['phi'])
    return load*sin(mbs.GetSensorValues(mbs.variables['sensorPhi']))

#dummy user function for frequency
def userFrequency(mbs, t, load):
    return mbs.variables['frequency']

#user function used in GenericODE2 to integrate current omega
def UFintegrateOmega(mbs, t, itemIndex, q, q_t):
    return [mbs.variables['frequency']*(2*pi)] #current frequency*2*pi is integrated into phi, return vector!

#node for 3D mass point:
nMass=mbs.AddNode(Point(referenceCoordinates = [L,0,0]))

#ground node
nGround=mbs.AddNode(NodePointGround(referenceCoordinates = [0,0,0]))
a=L
z=-0.1*L
background = GraphicsDataQuad([[-0,-a,z],[ 2*a,-a,z],[ 2*a, a,z],[0, a,z]], 
                              color=color4lightgrey, alternatingColor=color4white)
oGround=mbs.AddObject(ObjectGround(visualization=VObjectGround(graphicsData=[background])))

#add mass point (this is a 3D object with 3 coordinates):
gCube = GraphicsDataOrthoCubePoint([0.1*L,0,0], [0.2*L]*3, color4steelblue)
massPoint = mbs.AddObject(MassPoint(physicsMass = mass, nodeNumber = nMass,
                                    visualization=VMassPoint(graphicsData=[gCube])))

#marker for ground (=fixed):
groundMarker=mbs.AddMarker(MarkerNodeCoordinate(nodeNumber= nGround, coordinate = 0))
#marker for springDamper for first (x-)coordinate:
nodeMarker  =mbs.AddMarker(MarkerNodeCoordinate(nodeNumber= nMass, coordinate = 0))

#Spring-Damper between two marker coordinates
mbs.AddObject(CoordinateSpringDamper(markerNumbers = [groundMarker, nodeMarker], 
                                     stiffness = spring, damping = damper, 
                                     springForceUserFunction = springForce,
                                     visualization=VCoordinateSpringDamper(drawSize=0.05))) 

#add load:
mbs.AddLoad(LoadCoordinate(markerNumber = nodeMarker, 
                           load = load0, loadUserFunction=userLoad))

#dummy load applied to ground marker, just to record/integrate frequency
lFreq = mbs.AddLoad(LoadCoordinate(markerNumber = groundMarker, 
                           load = load0, loadUserFunction=userFrequency))

sensPos = mbs.AddSensor(SensorNode(nodeNumber=nMass, fileName='solution/nonlinearPos.txt',
                                   outputVariableType=exu.OutputVariableType.Displacement))
sensVel = mbs.AddSensor(SensorNode(nodeNumber=nMass, fileName='solution/nonlinearVel.txt',
                                   outputVariableType=exu.OutputVariableType.Velocity))
sensFreq = mbs.AddSensor(SensorLoad(loadNumber=lFreq, fileName='solution/nonlinearFreq.txt', 
                                    visualization=VSensorLoad(show=False)))

#+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
#node used to integrate omega into phi for excitation function
nODE2=mbs.AddNode(NodeGenericODE2(referenceCoordinates=[0], initialCoordinates=[0],initialCoordinates_t=[0],
                                  numberOfODE2Coordinates=1))

oODE2=mbs.AddObject(ObjectGenericODE2(nodeNumbers=[nODE2],massMatrix=np.diag([1]),
                                      forceUserFunction=UFintegrateOmega,
                                      visualization=VObjectGenericODE2(show=False)))
#improved version, using integration of omega:
mbs.variables['sensorPhi'] = mbs.AddSensor(SensorNode(nodeNumber=nODE2, fileName='solution/nonlinearPhi.txt', 
                                    outputVariableType = exu.OutputVariableType.Coordinates_t,
                                    visualization=VSensorNode(show=False)))
#+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++


mbs.Assemble()


SC.visualizationSettings.general.textSize = 16
SC.visualizationSettings.openGL.lineWidth = 2
SC.visualizationSettings.openGL.multiSampling = 4
SC.visualizationSettings.general.graphicsUpdateInterval = 0.02
#SC.visualizationSettings.window.renderWindowSize=[1024,900]
SC.visualizationSettings.window.renderWindowSize=[1200,1080]
SC.visualizationSettings.general.showSolverInformation = False



#%%+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
#this is an exemplary simulation function, which adjusts some values for simulation
def SimulationUF(mbs, dialog):
    #next two commands to zoom all ...:
    if mbs.variables['mode'] == 1:
        dialog.plots['limitsY'][0] = (-0.055,0.055)
    else:
        dialog.plots['limitsY'][0] = (-0.1,0.1)



SC.visualizationSettings.general.autoFitScene = False #otherwise, renderState not accepted for zoom
exu.StartRenderer()

SC.SetRenderState({'centerPoint': [0.500249445438385, -0.02912527695298195, 0.0],
 'maxSceneSize': 0.5,
 'zoom': 0.428807526826858,
 'currentWindowSize': [1400, 1200],
 'modelRotation': [[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]]})
time.sleep(0.5) #allow window to adjust view

h = 1e-3      #step size of solver
deltaT = 0.01 #time period to be simulated between every update

#++++++++++++++++++++++++++++
#define items for dialog
dialogItems = [{'type':'label', 'text':'Nonlinear oscillation simulator', 'grid':(0,0,2), 'options':['L']},
               {'type':'radio', 'textValueList':[('linear',0),('nonlinear (f=k*u+1000*k*u**3+d*v)',1)], 'value':0, 'variable':'mode', 'grid': [(2,0),(2,1)]},
               {'type':'label', 'text':'excitation frequency (Hz):', 'grid':(5,0)},
               {'type':'slider', 'range':(3*f1/800, 2.2*f1), 'value':omegaInit/(2*pi), 'steps':600, 'variable':'frequency', 'grid':(5,1)},
               {'type':'label', 'text':'damping:', 'grid':(6,0)},
               {'type':'slider', 'range': (0, 40), 'value':damper, 'steps':600, 'variable':'damping', 'grid':(6,1)},
               {'type':'label', 'text':'stiffness:', 'grid':(7,0)},
               {'type':'slider', 'range':(0, 10000), 'value':spring, 'steps':600, 'variable':'stiffness', 'grid':(7,1)}]

#++++++++++++++++++++++++++++++++++++++++
#specify subplots to be shown interactively
plt.close('all')

if False: #with phase
    deltaT*=0.5 #higher resolution for phase
    plots={'fontSize':16,'sizeInches':(12,12),'nPoints':200, 
           'subplots':(2,2), 'sensors':[[(sensPos,0),(sensPos,1),'time','mass position'], 
                                        [(sensFreq,0),(sensFreq,1),'time','excitation frequency'],
                                        [(sensPos,1),(sensVel,1),'position (phase space)','velocity (phase space)']
                                        ],
           'limitsX':[(),(),()], #omit if time auto-range
           'limitsY':[(-0.1,0.1),(0,2.2*f1*1.01),()]}
else:
    plots={'fontSize':16,'sizeInches':(12,12),'nPoints':400, 
           'subplots':(2,1), 'sensors':[[(sensPos,0),(sensPos,1),'time','mass position'], 
                                        [(sensFreq,0),(sensFreq,1),'time','excitation frequency']],
           'limitsX':[(),()], #omit if time auto-range
           'limitsY':[(-0.1,0.1),(0,2.2*f1*1.01)]}

#++++++++++++++++++++++++++++++++++++++++
#setup simulation settings and run interactive dialog:
simulationSettings = exu.SimulationSettings()
simulationSettings.timeIntegration.generalizedAlpha.spectralRadius = 1
simulationSettings.solutionSettings.writeSolutionToFile = False
simulationSettings.solutionSettings.solutionWritePeriod = 0.1 #data not used
simulationSettings.solutionSettings.sensorsWritePeriod = 0.1 #data not used
simulationSettings.solutionSettings.solutionInformation = 'Nonlinear oscillations: compare linear / nonlinear case'
simulationSettings.timeIntegration.verboseMode = 0 #turn off, because of lots of output

simulationSettings.timeIntegration.numberOfSteps = int(deltaT/h)
simulationSettings.timeIntegration.endTime = deltaT

dialog = InteractiveDialog(mbs=mbs, simulationSettings=simulationSettings,
                           simulationFunction=SimulationUF, title='Interactive window',
                           dialogItems=dialogItems, period=deltaT, realtimeFactor=10,
                           plots=plots, fontSize=12)

# #stop solver and close render window
exu.StopRenderer() #safely close rendering window!