Skip to content

jhayes14/UAN

master
Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
Code

Latest commit

 

Git stats

Files

Permalink
Failed to load latest commit information.
Type
Name
Latest commit message
Commit time
 
 
 
 
 
 
 
 
 
 
 
 

UAN

Code for Learning Universal Adversarial Perturbations with Generative Models

Alt text

In this paper, we use generative models to compute universal adversarial perturbations. The generator is not conditioned on the images and so creates a perturbation that can be applied to any image to create an adversarial example.

We get pretty pictures like this:

Alt text

Clean Image + Perturbation == Adversarial Image


Here is the output of a UAN throughout training:

Alt text


Data set-up

For ImageNet

For CIFAR-10

  • Attack code will download if dataset does not exist.

Target model training steps:

For ImageNet

For CIFAR-10


To run the attack, choose between ImageNet and CIFAR-10 and specify the model.

e.g. python main.py --cuda --dataset ImageNet --epochs 200 --batchSize 32 --shrink 0.00075 --shrink_inc 0.0001 --l2reg 0.00001 --restrict_to_correct_preds 1 --netClassifier resnet152 --imageSize 224 --outf resnet-results --every 100

Note: For best results on ImageNet, batch size needs to be large. This takes up a lot of memory.

About

Universal Adversarial Networks

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages