Skip to content

Latest commit

 

History

History
44 lines (31 loc) · 1.94 KB

dali.rst

File metadata and controls

44 lines (31 loc) · 1.94 KB

Derivative Approximation for LIkelihood (DALI)

This approximation is based on Taylor expansion of the logarithm of the likelihood but being ordered in terms of order of derivatives:

log\mathcal{L} \approx log\mathcal{L}_{0}&
 -\left[\frac{1}{2}\sum_{i,j}\left\langle \partial_{i}h(\theta)|\partial_{j}h(\theta)\right\rangle _{0}\Delta\theta_{i}\Delta\theta_{j}\right] \\
&
-\left[\frac{1}{2}\sum_{i,j,k}\left\langle \partial_{i}h(\theta)|\partial_{j}\partial_{k}h(\theta)\right\rangle _{0}\Delta\theta^{ijk}
+\frac{1}{8}\sum_{i,j,k,l}\left\langle \partial_{i}\partial_{j}h(\theta)|\partial_{k}\partial_{l}h(\theta)\right\rangle _{0}\Delta\theta^{ijkl}\right] \\
&
        -\left[\frac{1}{6}\sum_{i,\cdots, l}\left\langle \partial_{i}h|\partial_{j}\partial_{k}\partial_{l}h\right\rangle \Delta\theta^{ijkl}
        +\frac{1}{12}\sum_{i,\cdots, m}\left\langle \partial_{i}\partial_{j}h|\partial_{k}\partial_{l}\partial_{m}h\right\rangle \Delta\theta^{ijklm} \right.\\
& \left.
        +\frac{1}{72}\sum_{i,\cdots, n}\left\langle \partial_{i}\partial_{j}\partial_{k}h|\partial_{l}\partial_{m}\partial_{n}h\right\rangle \Delta\theta^{ijklmn}
        \right] \\
& +\mathcal{O}(\partial^{4})

where,

\Delta\theta^i =& \theta^i-\theta_0^i  \\
\Delta\theta^{ij} =& \Delta\theta^i\cdot\Delta\theta^j  \\
\Delta\theta^{ij..m} =& \Delta\theta^{i}\cdot\Delta\theta^j\cdots\Delta\theta^m

GWDALI deals with derivatives through numerical derivatives with finite differences. It is availble to ways on computing these derivatives:

  • With an uncertainty of O(h^2):

    \frac{df}{dx}=\left\{ \frac{1}{h}\left[f(x+h/2)-f(x-h/2)\right]\right\} +\mathcal{O}(h^{2})
    
  • With uncertainty of O(h^4):

    \frac{df}{dx}=\left\{ \frac{4}{3h}\left[f(x+h/2)-f(x-h/2)\right]-\frac{1}{6h}\left[f(x+h)-f(x-h)\right]\right\} +\mathcal{O}(h^{4})
    

where h is the integration step.