Examples of client authentication with gRPC
Switch branches/tags
Nothing to show
Clone or download
Fetching latest commit…
Cannot retrieve the latest commit at this time.
Permalink
Type Name Latest commit message Commit time
Failed to load latest commit information.
auth
cmd/client
insecure
proto
server
vendor
Gopkg.lock
Gopkg.toml
LICENSE
Makefile
README.md
main.go

README.md

grpc-auth-example

Examples of client authentication with gRPC. Both server-side and client-side implementations are shown. All authentication is performed in a server-side interceptor implemented in the auth package.

TLS Client Certificate Authentication

The first type of authentication uses TLS Certificate subjects to validate that the correct client is connecting. This, of course, relies on the issue certificate authority only issuing certificates with the correct subject to the correct service, but that is outside the scope of this repository.

On the client side, we create a certificate with the appropriate subject:

pk, err := rsa.GenerateKey(rand.Reader, 2048)
if err != nil {
    return nil, err
}

template := &x509.Certificate{
    SerialNumber: serialNumber,
    Subject: pkix.Name{
        Organization: []string{"Acme Co"},
        CommonName:   username, // Will be checked by the server
    },
    NotBefore:             time.Now(),
    NotAfter:              time.Now().Add(time.Hour),
    KeyUsage:              x509.KeyUsageKeyEncipherment | x509.KeyUsageDigitalSignature,
    ExtKeyUsage:           []x509.ExtKeyUsage{x509.ExtKeyUsageClientAuth},
    BasicConstraintsValid: true,
}

cert, err := x509.CreateCertificate(rand.Reader, template, insecure.Cert.Leaf, pk.Public(), insecure.Cert.PrivateKey)
if err != nil {
    return nil, err
}

tlsCert := tls.Certificate{
    Certificate: [][]byte{cert},
    PrivateKey:  pk,
}

We then use the certificate for transport security when dialing:

tlsConfig := &tls.Config{
    Certificates: []tls.Certificate{tlsCert},
    RootCAs:      insecure.CertPool,
}

conn, err := grpc.DialContext(ctx, net.JoinHostPort(addr, port),
    grpc.WithTransportCredentials(credentials.NewTLS(tlsConfig)),
)

On the server side, we use the grpc/peer package to find the subject of the client side certificate:

p, ok := peer.FromContext(ctx)
if !ok {
    return status.Error(codes.Unauthenticated, "no peer found")
}

tlsAuth, ok := p.AuthInfo.(credentials.TLSInfo)
if !ok {
    return status.Error(codes.Unauthenticated, "unexpected peer transport credentials")
}

if len(tlsAuth.State.VerifiedChains) == 0 || len(tlsAuth.State.VerifiedChains[0]) == 0 {
    return status.Error(codes.Unauthenticated, "could not verify peer certificate")
}

// Check subject common name against configured username
if tlsAuth.State.VerifiedChains[0][0].Subject.CommonName != a.Username {
    return status.Error(codes.Unauthenticated, "invalid subject common name")
}

return nil

This of course requires the server to verify incoming client certs, so remember to configure the appropriate tls.Config.ClientAuth value. In this example, we use tls.VerifyClientCertIfGiven to allow clients both with and without certificates.

Token based authentication

Secondly we've got token based authentication, which sends the authentication details in the request headers. On the client side this means implementing grpc/credentials.PerRPCCredentials:

type tokenAuth struct {
	token string
}

func (t tokenAuth) GetRequestMetadata(ctx context.Context, in ...string) (map[string]string, error) {
	return map[string]string{
		"authorization": "Bearer " + t.token,
	}, nil
}

func (tokenAuth) RequireTransportSecurity() bool {
	return true
}

We then use the tokenAuth struct when dialling:

conn, err := grpc.DialContext(ctx, net.JoinHostPort(addr, port),
    grpc.WithTransportCredentials(credentials.NewClientTLSFromCert(insecure.CertPool, "")),
    grpc.WithPerRPCCredentials(tokenAuth{
        token: token,
    }),
)

On the server side, we simply check the header for the token value, but, of course, if you were using a real token you might want to parse it and perform some validation as well.

const prefix = "Bearer "
if !strings.HasPrefix(auth, prefix) {
	return ctx, status.Error(codes.Unauthenticated, `missing "Bearer " prefix in "Authorization" header`)
}

if strings.TrimPrefix(auth, prefix) != a.Token {
	return ctx, status.Error(codes.Unauthenticated, "invalid token")
}

HTTP Basic authentication

Much like the token based authentication, this uses PerRPCCredentials, with the only difference being the contents of the header:

type basicAuth struct {
	username string
	password string
}

func (b basicAuth) GetRequestMetadata(ctx context.Context, in ...string) (map[string]string, error) {
	auth := b.username + ":" + b.password
	enc := base64.StdEncoding.EncodeToString([]byte(auth))
	return map[string]string{
		"authorization": "Basic " + enc,
	}, nil
}

func (basicAuth) RequireTransportSecurity() bool {
	return true
}

And dialling:

conn, err := grpc.DialContext(ctx, net.JoinHostPort(addr, port),
	grpc.WithTransportCredentials(credentials.NewClientTLSFromCert(insecure.CertPool, "")),
	grpc.WithPerRPCCredentials(basicAuth{
		username: username,
		password: password,
	}),
)

The server has to parse the the header:

const prefix = "Basic "
if !strings.HasPrefix(auth, prefix) {
    return ctx, status.Error(codes.Unauthenticated, `missing "Basic " prefix in "Authorization" header`)
}

c, err := base64.StdEncoding.DecodeString(auth[len(prefix):])
if err != nil {
    return ctx, status.Error(codes.Unauthenticated, `invalid base64 in header`)
}

cs := string(c)
s := strings.IndexByte(cs, ':')
if s < 0 {
    return ctx, status.Error(codes.Unauthenticated, `invalid basic auth format`)
}

user, password := cs[:s], cs[s+1:]
if user != a.Username || password != a.Password {
    return ctx, status.Error(codes.Unauthenticated, "invalid user or password")
}