Skip to content
Food image prediction using TensorFlow and calorie estimation using K-Nearest-Neighbors algoritm
Jupyter Notebook Python
Branch: master
Clone or download
Fetching latest commit…
Cannot retrieve the latest commit at this time.
Permalink
Type Name Latest commit message Commit time
Failed to load latest commit information.
.idea Added code updated files Dec 13, 2016
.ipynb_checkpoints calorieSearchCode updated Dec 8, 2016
Code Added code updated files Dec 13, 2016
DataSets Added datasets Dec 12, 2016
OutputScreenshots Added error handling and output screenshots Dec 12, 2016
ResearchPapers Added code datasets and papers. Nov 24, 2016
README.md updated readme Mar 14, 2019

README.md

NYU CS 6293: Machine-Learning-Project

Prerequisites

Python 3.6
TensorFlow 1.13
OpnCV 3.4
Numpy 1.12
Pandas 0.22
Docker (latest should work)
Requests 2.1

Stpes to execute our code:

  1. Install Docker

  2. docker run hello-world

  3. docker run -it gcr.io/tensorflow/tensorflow:latest-devel

  4. Check Tensorflow:

    python import tensorflow

  5. Retrieve Images: $ ctrl-D if you're still in Docker and then: $ cd $HOME $ mkdir tf_files $ cd tf_files $ curl -O https://goo.gl/NohU7G $ gzip -d food_datasets.tar.gz $ tar xzf DataSets.tar $ cd $HOME/tf_files/DataSets/food_photos

  6. Link image dataset virtually to tensorflow: $docker run -it -v /DataSets/food_photos:/tf_files/ImageDataSets/food_photos gcr.io/tensorflow/tensorflow:latest-devel $ ls /tf_files/DataSets food_photos

  7. Retrieving the Training code: $ cd /tensorflow $ git pull

  8. Training the Inception model: $ python tensorflow/examples/image_retraining/retrain.py
    -- bottleneck_dir=/tf_files/ImageDataSets/bottlenecks
    -- how_many_training_steps 500
    -- model_dir=/tf_files/ImageDataSets/inception
    -- output_graph=/tf_files/ImageDataSets/retrained_graph.pb
    -- output_labels=/tf_files/ImageDataSets/retrained_labels.txt
    -- image_dir /tf_files/DataSets/food_photos

    The retraining script will write out a version of the Inception v3 network with a final layer retrained to your categories to /tmp/output_graph.pb and a text file containing the labels to /tmp/output_labels.txt.

  9. Using trained model to predict new images: $ ctrl-D to exit Docker and then: $ curl -L goo.gl/NyNBG5 > $HOME/tf_files/ImageDataSets/label_image.py $ docker run -it -v /DataSets/test_photos:/tf_files/ImageDataSets/test_photos gcr.io/tensorflow/tensorflow:latest-devel

  10. Predicting new images: $ python /tf_files/ImageDataSets/label_image.py /ImageDataSets/test_photos/Pizza/pizza1.jpg $ python /tf_files/label_image.py /ImageDataSets/test_photos/VegBurger/notburger_cake1.jpg

Team members:

  • Harshit Pareek (hp1014),
  • Jubin Soni (jas1464),
  • Ankur Patil (asp549) GitHubIDs:@jubins @hp1014 @ankpatil18

Please contact anyone of us if you face any difficulty in executing the code.

You can’t perform that action at this time.