Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Changed 'integration' to 'differentiation' #119

Merged
merged 1 commit into from Dec 10, 2023
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Jump to
Jump to file
Failed to load files.
Diff view
Diff view
2 changes: 1 addition & 1 deletion quarto/integrals/partial_fractions.qmd
Expand Up @@ -14,7 +14,7 @@ using SymPy
Integration is facilitated when an antiderivative for $f$ can be found, as then definite integrals can be evaluated through the fundamental theorem of calculus.


However, despite integration being an algorithmic procedure, integration is not. There are "tricks" to try, such as substitution and integration by parts. These work in some cases. However, there are classes of functions for which algorithms exist. For example, the `SymPy` `integrate` function mostly implements an algorithm that decides if an elementary function has an antiderivative. The [elementary](http://en.wikipedia.org/wiki/Elementary_function) functions include exponentials, their inverses (logarithms), trigonometric functions, their inverses, and powers, including $n$th roots. Not every elementary function will have an antiderivative comprised of (finite) combinations of elementary functions. The typical example is $e^{x^2}$, which has no simple antiderivative, despite its ubiquitousness.
However, despite differentiation being an algorithmic procedure, integration is not. There are "tricks" to try, such as substitution and integration by parts. These work in some cases. However, there are classes of functions for which algorithms exist. For example, the `SymPy` `integrate` function mostly implements an algorithm that decides if an elementary function has an antiderivative. The [elementary](http://en.wikipedia.org/wiki/Elementary_function) functions include exponentials, their inverses (logarithms), trigonometric functions, their inverses, and powers, including $n$th roots. Not every elementary function will have an antiderivative comprised of (finite) combinations of elementary functions. The typical example is $e^{x^2}$, which has no simple antiderivative, despite its ubiquitousness.


There are classes of functions where an (elementary) antiderivative can always be found. Polynomials provide a case. More surprisingly, so do their ratios, *rational functions*.
Expand Down