Skip to content
Branch: master
Go to file
Code

Latest commit

Files

Permalink
Failed to load latest commit information.
Type
Name
Latest commit message
Commit time
R
 
 
 
 
 
 
man
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

README.md

eyetrackingR

Warning: Unmaintained

This package has not been updated in several years and is no longer actively maintained. There are several outstanding issues. If anyone is interested in taking over package maintenance, please reach out.

Recent Updates:

EyetrackingR is now compatible with dplyr > 0.5.0.

Eye-tracking Data: Cleaning, Analysis, & Visualization

This package is designed to make dealing with eye-tracking data easier. It addresses tasks along the pipeline from raw data to analysis and visualization. It offers several popular types of analyses, including growth-curve analysis, onset-contingent reaction time analyses, as well as several non-parametric bootstrapping approaches.

www.eyetracking-r.com

Installation

To install from CRAN:

install.packages('eyetrackingR')

To load:

library(eyetrackingR)

For the development version (make sure you have run install.packages("devtools") to get devtools first):

devtools::install_github("jwdink/eyetrackingR")

Usage

EyetrackingR only requires that your data is in an R dataframe and has a few necessary columns. For that reason, eyetrackingR is compatible with any eyetracker, so long as you can export your data to a table and import it into R. See the preparing your data vignette.

Once your data is in R, you can prepare it for eyetrackingR by running the make_eyetrackingr_data function, e.g.:

data <- make_eyetrackingr_data(your_original_data, 
                       participant_column = "ParticipantName",
                       trial_column = "Trial",
                       time_column = "Timestamp",
                       trackloss_column = "TrackLoss",
                       treat_non_aoi_looks_as_missing = TRUE
)

From here, all of eyetrackingR's functionality becomes available for this data. Check out the eyetrackingR workflow to get an accesible overview of this functionality, or check out the vignettes for guides on how to clean your data, visualize it, and perform analyses.


Copyright (c) 2015, Jacob Dink and Brock Ferguson

Released under the MIT License (see LICENSE for details)

About

This package is designed to make dealing with eye-tracking data easier. It addresses tasks along the pipeline from raw data to analysis and visualization.

Resources

License

Languages

You can’t perform that action at this time.