Skip to content
A fast Python implementation of locality sensitive hashing.
Branch: master
Clone or download

Latest commit

Fetching latest commit…
Cannot retrieve the latest commit at this time.


Type Name Latest commit message Commit time
Failed to load latest commit information.
lshash Bumped up version to 0.0.4dev Apr 27, 2013
.gitignore added gitignore Dec 28, 2012
CHANGES.rst fixes docs for PyPi, increment version to 0.0.3dev Dec 28, 2012
CONTRIBUTORS.txt added contributors list Dec 26, 2012
LICENSE Initialized README, added MIT license Dec 1, 2012 Fixed an include error: should be LICENSE instead of LICENSE.txt Apr 27, 2013
README.rst Bumped up version to 0.0.4dev Apr 27, 2013 Fix imports and Dec 28, 2012



Version: 0.0.4dev

A fast Python implementation of locality sensitive hashing with persistance support.


  • Fast hash calculation for large amount of high dimensional data through the use of numpy arrays.
  • Built-in support for persistency through Redis.
  • Multiple hash indexes support.
  • Built-in support for common distance/objective functions for ranking outputs.


LSHash depends on the following libraries:

  • numpy
  • redis (if persistency through Redis is needed)
  • bitarray (if hamming distance is used as distance function)

To install:

$ pip install lshash


To create 6-bit hashes for input data of 8 dimensions:

>>> from lshash import LSHash

>>> lsh = LSHash(6, 8)
>>> lsh.index([1,2,3,4,5,6,7,8])
>>> lsh.index([2,3,4,5,6,7,8,9])
>>> lsh.index([10,12,99,1,5,31,2,3])
>>> lsh.query([1,2,3,4,5,6,7,7])
[((1, 2, 3, 4, 5, 6, 7, 8), 1.0),
 ((2, 3, 4, 5, 6, 7, 8, 9), 11)]

Main Interface

  • To initialize a LSHash instance:
LSHash(hash_size, input_dim, num_of_hashtables=1, storage=None, matrices_filename=None, overwrite=False)


The length of the resulting binary hash.
The dimension of the input vector.
num_hashtables = 1:
(optional) The number of hash tables used for multiple lookups.
storage = None:
(optional) Specify the name of the storage to be used for the index storage. Options include "redis".
matrices_filename = None:
(optional) Specify the path to the .npz file random matrices are stored or to be stored if the file does not exist yet
overwrite = False:
(optional) Whether to overwrite the matrices file if it already exist
  • To index a data point of a given LSHash instance, e.g., lsh:
lsh.index(input_point, extra_data=None):


The input data point is an array or tuple of numbers of input_dim.
extra_data = None:
(optional) Extra data to be added along with the input_point.
  • To query a data point against a given LSHash instance, e.g., lsh:
lsh.query(query_point, num_results=None, distance_func="euclidean"):


The query data point is an array or tuple of numbers of input_dim.
num_results = None:
(optional) The number of query results to return in ranked order. By default all results will be returned.
distance_func = "euclidean":
(optional) Distance function to use to rank the candidates. By default euclidean distance function will be used.
You can’t perform that action at this time.