Skip to content
Age-structured population dynamics model
Branch: master
Clone or download
Fetching latest commit…
Cannot retrieve the latest commit at this time.
Permalink
Type Name Latest commit message Commit time
Failed to load latest commit information.
R
man
.Rbuildignore
.gitignore
DESCRIPTION
LICENSE
NAMESPACE
README.md

README.md

albopictus

Age-Structured Population Dynamics Model

Installation

The R package can be installed from the command line,

R CMD install albopictus_x.x.tar.gz

to be loaded easily at the R command prompt.

library(albopictus)

Usage

Generate a population with stochastic dynamics

s <- spop(stochastic=TRUE)

Add 1000 20-day-old individuals

add(s) <- data.frame(number=1000,age=20)

Iterate one day without death and assume development in 20 (+-5) days

iterate(s) <- data.frame(dev_mean=20,dev_sd=5,death=0)
print(developed(s))

Iterate another day assuming no development but age-dependent survival. Let each individual survive for 20 days (+-5)

iterate(s) <- data.frame(death_mean=20,death_sd=5,dev=0)
print(dead(s))

Note that the previous values of developed and dead will be overwritten by this command

Generate a deterministic population and observe the difference

s <- spop(stochastic=FALSE)
add(s) <- data.frame(number=1000,age=20)

iterate(s) <- data.frame(dev_mean=20,dev_sd=5,death=0)
print(developed(s))

iterate(s) <- data.frame(death_mean=20,death_sd=5,dev=0)
print(dead(s))
You can’t perform that action at this time.
You signed in with another tab or window. Reload to refresh your session. You signed out in another tab or window. Reload to refresh your session.