Skip to content
No description, website, or topics provided.
Jupyter Notebook
Branch: master
Clone or download

Latest commit

Fetching latest commit…
Cannot retrieve the latest commit at this time.

Files

Permalink
Type Name Latest commit message Commit time
Failed to load latest commit information.
.ipynb_checkpoints
Input
Submit
Digit_Recognizer_by_Deep_Learning.ipynb
README.md

README.md

Project : Digit_Recognizer_by_Deep_Learning

Identify digits from a dataset of tens of thousands of handwritten images

Competition Description

MNIST ("Modified National Institute of Standards and Technology") is the de facto “hello world” dataset of computer vision. Since its release in 1999, this classic dataset of handwritten images has served as the basis for benchmarking classification algorithms. As new machine learning techniques emerge, MNIST remains a reliable resource for researchers and learners alike.

In this competition, your goal is to correctly identify digits from a dataset of tens of thousands of handwritten images. We’ve curated a set of tutorial-style kernels which cover everything from regression to neural networks. We encourage you to experiment with different algorithms to learn first-hand what works well and how techniques compare.

File descriptions

The data files train.csv and test.csv contain gray-scale images of hand-drawn digits, from zero through nine..

Each image is 28 pixels in height and 28 pixels in width, for a total of 784 pixels in total. Each pixel has a single pixel-value associated with it, indicating the lightness or darkness of that pixel, with higher numbers meaning darker. This pixel-value is an integer between 0 and 255, inclusive.

  • train.csv : The training set (42,000 EA)
  • test.csv : The test set (28,000 EA)

Evaluation Method

This competition is evaluated on the categorization accuracy of your predictions (the percentage of images you get correct).

Competition Timeline

  • Start Date: 7/25/2012 8:43 PM UTC
  • Merger Deadline: None
  • Entry Deadline: None
  • End Date: 1/7/2020 12:00 AM UTC

Prediction

  • Model : Keras Sequential
  • Kaggle Score : 0.98271
  • Kaggle rank : 1,139 / 2,279 (49.9%) [2018.4.23]
You can’t perform that action at this time.