Skip to content
Permalink
master
Switch branches/tags
Go to file
 
 
Cannot retrieve contributors at this time
import os
import pickle
from sklearn.ensemble import RandomForestClassifier
from sklearn.feature_extraction import DictVectorizer
from sklearn.pipeline import make_pipeline
from whereami.get_data import get_train_data
from whereami.utils import get_model_file
class LearnLocation(Exception):
pass
def get_pipeline(clf=RandomForestClassifier(n_estimators=100, class_weight="balanced")):
return make_pipeline(DictVectorizer(sparse=False), clf)
def train_model(path=None):
model_file = get_model_file(path)
X, y = get_train_data(path)
if len(X) == 0:
raise ValueError("No wifi access points have been found during training")
# fantastic: because using "quality" rather than "rssi", we expect values 0-150
# 0 essentially indicates no connection
# 150 is something like best possible connection
# Not observing a wifi will mean a value of 0, which is the perfect default.
lp = get_pipeline()
lp.fit(X, y)
with open(model_file, "wb") as f:
pickle.dump(lp, f)
return lp
def get_model(path=None):
model_file = get_model_file(path)
if not os.path.isfile(model_file): # pragma: no cover
msg = "First learn a location, e.g. with `whereami learn -l kitchen`."
raise LearnLocation(msg)
with open(model_file, "rb") as f:
lp = pickle.load(f)
return lp