Skip to content

Latest commit

 

History

History
38 lines (30 loc) · 2.76 KB

introduction.md

File metadata and controls

38 lines (30 loc) · 2.76 KB

Introduction to Redis

Redis is an open source (BSD licensed), in-memory data structure store, used as a database, cache and message broker. It supports data structures such as strings, hashes, lists, sets, sorted sets with range queries, bitmaps, hyperloglogs and geospatial indexes with radius queries. Redis has built-in replication, Lua scripting, LRU eviction, transactions and different levels of on-disk persistence, and provides high availability via Redis Sentinel and automatic partitioning with Redis Cluster.

You can run atomic operations on these types, like appending to a string; incrementing the value in a hash; pushing an element to a list; computing set intersection, union and difference; or getting the member with highest ranking in a sorted set.

In order to achieve its outstanding performance, Redis works with an in-memory dataset. Depending on your use case, you can persist it either by dumping the dataset to disk every once in a while, or by appending each command to a log. Persistence can be optionally disabled, if you just need a feature-rich, networked, in-memory cache.

Redis also supports trivial-to-setup master-slave asynchronous replication, with very fast non-blocking first synchronization, auto-reconnection with partial resynchronization on net split.

Other features include:

You can use Redis from most programming languages out there.

Redis is written in ANSI C and works in most POSIX systems like Linux, *BSD, OS X without external dependencies. Linux and OS X are the two operating systems where Redis is developed and tested the most, and we recommend using Linux for deploying. Redis may work in Solaris-derived systems like SmartOS, but the support is best effort. There is no official support for Windows builds, but Microsoft develops and maintains a Win-64 port of Redis.