Skip to content

Latest commit

 

History

History
266 lines (214 loc) · 15.9 KB

File metadata and controls

266 lines (214 loc) · 15.9 KB

With kwok provider you can:

  • Run CA (cluster-autoscaler) in your terminal and connect it to a cluster (like a kubebuilder controller). You don't have to run CA in an actual cluster to test things out.
  • Perform a "dry-run" to test autoscaling behavior of CA without creating actual VMs in your cloud provider.
  • Run CA in your local kind cluster with nodes and workloads from a remote cluster (you can also use nodes from the same cluster).
  • Test behavior of CA against a large number of fake nodes (of your choice) with metrics.
  • etc.,

What is kwok provider? Why kwok provider?

Check the doc around motivation.

How to use kwok provider

In a Kubernetes cluster:

1. Install kwok controller

Follow the official docs to install kwok in a cluster.

2. Configure cluster-autoscaler to use kwok cloud provider

Using helm chart:

helm upgrade --install <release-name> charts/cluster-autoscaler  \
--set "serviceMonitor.enabled"=true --set "serviceMonitor.namespace"=default \
--set "cloudprovider"=kwok --set "image.tag"="<image-tag>" \
--set "image.repository"="<image-repo>" \
--set "autoDiscovery.clusterName"="kind-kind" \
--set "serviceMonitor.selector.release"="prom"

Replace <release-name> with the release name you want. Replace <image-tag> with the image tag you want. Replace <image-repo> with the image repo you want (check releases for the official image repos and tags)

Note that kwok provider doesn't use autoDiscovery.clusterName. You can use a fake value for autoDiscovery.clusterName.

Replace "release"="prom" with the label selector for ServiceMonitor in your grafana/prometheus installation.

For example, if you are using prometheus operator, you can find the service monitor label selector using

kubectl get prometheus -ojsonpath='{.items[*].spec.serviceMonitorSelector}' | jq # using jq is optional

Here's what it looks like

helm upgrade ... command above installs cluster-autoscaler with kwok cloud provider settings. The helm chart by default installs a default kwok provider configuration (kwok-provider-config ConfigMap) and sample template nodes (kwok-provider-templates ConfigMap) to get you started. Replace the content of these ConfigMaps according to your need.

If you already have cluster-autoscaler running and don't want to use helm ..., you can make the following changes to get kwok provider working:

  1. Create kwok-provider-config ConfigMap for kwok provider config
  2. Create kwok-provider-templates ConfigMap for node templates
  3. Set POD_NAMESPACE env variable in the CA Deployment (if it is not there already)
  4. Set --cloud-provider=kwok in the CA Deployment
  5. That's all.

For 1 and 2, you can refer to helm chart for the ConfigMaps. You can render them from the helm chart using:

helm template charts/cluster-autoscaler/  --set "cloudProvider"="kwok" -s templates/configmap.yaml --namespace=default

Replace --namespace with namespace where your CA pod is running.

If you want to temporarily revert back to your previous cloud provider, just change the --cloud-provider=kwok. No other provider uses kwok-provider-config and kwok-provider-templates ConfigMap (you can keep them in the cluster or delete them if you want to revert completely). POD_NAMESPACE is used only by kwok provider (at the time of writing this).

3. Configure kwok cloud provider

Decide if you want to use static template nodes or dynamic template nodes (check the FAQ to understand the difference).

If you want to use static template nodes,

kwok-provider-config ConfigMap in the helm chart by default is set to use static template nodes (readNodesFrom is set to configmap). CA helm chart also installs a kwok-provider-templates ConfigMap with sample node yamls by default. If you want to use your own node yamls,

# delete the existing configmap
kubectl delete configmap kwok-provider-templates
# create a new configmap with your own node yamls
kubectl create configmap kwok-provider-templates --from-file=templates=template-nodes.yaml

Replace template-nodes.yaml with path to your template nodes file.

If you are using your own template nodes in the kwok-provider-templates ConfigMap, make sure you have set the correct value for nodegroups.fromNodeLabelKey/nodegroups.fromNodeAnnotation. Not doing so will make CA not scale up nodes (it won't throw any error either).

If you want to use dynamic template nodes,

Set readNodesFrom in kwok-provider-config ConfigMap to cluster. This tells kwok provider to use live nodes from the cluster as template nodes.

If you are using live nodes from cluster as template nodes in the kwok-provider-templates ConfigMap, make sure you have set the correct value for nodegroups.fromNodeLabelKey/nodegroups.fromNodeAnnotation. Not doing so will make CA not scale up nodes (it won't throw any error either).

For local development

  1. Point your kubeconfig to the cluster where you want to test your changes Using kubectx:
kubectx <cluster-name>

Using kubectl:

kubectl config get-contexts

  1. Create kwok-provider-config and kwok-provider-templates ConfigMap in the cluster you want to test your changes.

This is important because even if you run CA locally with kwok provider, kwok provider still searches for the kwok-provider-config ConfigMap and kwok-provider-templates (because by default kwok-provider-config has readNodesFrom set to configmap) in the cluster it connects to.

You can create both the ConfigMap resources from the helm chart like this:

helm template charts/cluster-autoscaler/  --set "cloudProvider"="kwok" -s templates/configmap.yaml --namespace=default | kubectl apply -f -

--namespace has to match POD_NAMESPACE env variable you set below.

  1. Run CA locally
# replace `KUBERNETES_SERVICE_HOST` and `KUBERNETES_SERVICE_PORT`
# with your kubernetes api server url
# you can find it with `kubectl cluster-info`
# example:
# $ kubectl cluster-info
# Kubernetes control plane is running at https://127.0.0.1:36357
# ...
export KUBERNETES_SERVICE_HOST=https://127.0.0.1
export KUBERNETES_SERVICE_PORT=36357
# POD_NAMESPACE is the namespace where you want to look for
# your `kwok-provider-config` and `kwok-provider-templates` ConfigMap
export POD_NAMESPACE=default
# KWOK_PROVIDER_MODE tells kwok provider that we are running CA locally
export KWOK_PROVIDER_MODE=local
# `2>&1` redirects both stdout and stderr to VS Code (remove `| code -` if you don't use VS Code)
go run main.go --kubeconfig=/home/suraj/.kube/config --cloud-provider=kwok --namespace=default --logtostderr=true --stderrthreshold=info --v=5 2>&1 | code -

This is what it looks like in action:

Tweaking the kwok provider

You can change the behavior of kwok provider by tweaking the kwok provider configuration in kwok-provider-config ConfigMap:

# only v1alpha1 is supported right now
apiVersion: v1alpha1
# possible values: [cluster,configmap]
# cluster: use nodes from cluster as template nodes
# configmap: use node yamls from a configmap as template nodes
readNodesFrom: configmap
# nodegroups specifies nodegroup level config
nodegroups:
  # fromNodeLabelKey's value is used to group nodes together into nodegroups
  # For example, say you want to group nodes with same value for `node.kubernetes.io/instance-type`
  # label as a nodegroup. Here are the nodes you have:
  # node1: m5.xlarge
  # node2: c5.xlarge
  # node3: m5.xlarge
  # Your nodegroups will look like this:
  # nodegroup1: [node1,node3]
  # nodegroup2: [node2]
  fromNodeLabelKey: "node.kubernetes.io/instance-type"

  # fromNodeAnnotation's value is used to group nodes together into nodegroups
  # (basically same as `fromNodeLabelKey` except based on annotation)
  # you can specify either of `fromNodeLabelKey` OR `fromNodeAnnotation`
  # (both are not allowed)
  fromNodeAnnotation: "eks.amazonaws.com/nodegroup"
# nodes specifies node level config
nodes:
  # skipTaint is used to enable/disable adding kwok provider taint on the template nodes
  # default is false so that even if you run the provider in a production cluster
  # you don't have to worry about production workload
  # getting accidentally scheduled on the fake nodes
  skipTaint: true # default: false
  # gpuConfig is used to specify gpu config for the node
  gpuConfig:
    # to tell kwok provider what label should be considered as GPU label
    gpuLabelKey: "k8s.amazonaws.com/accelerator"

# availableGPUTypes is used to specify available GPU types
availableGPUTypes:
 "nvidia-tesla-k80": {}
 "nvidia-tesla-p100": {}
# configmap specifies config map name and key which stores the kwok provider templates in the cluster
# Only applicable when `readNodesFrom: configmap`
configmap:
  name: kwok-provider-templates
  key: kwok-config # default: config

By default, kwok provider looks for kwok-provider-config ConfigMap. If you want to use a different ConfigMap name, set the env variable KWOK_PROVIDER_CONFIGMAP (e.g., KWOK_PROVIDER_CONFIGMAP=kpconfig). You can set this env variable in the helm chart using kwokConfigMapName OR you can set it directly in the cluster-autoscaler Deployment with kubectl edit deployment ....

FAQ

1. What is the difference between kwok and kwok provider?

kwok is an open source project under sig-scheduling.

KWOK is a toolkit that enables setting up a cluster of thousands of Nodes in seconds. Under the scene, all Nodes are simulated to behave like real ones, so the overall approach employs a pretty low resource footprint that you can easily play around on your laptop.

https://kwok.sigs.k8s.io/

kwok provider refers to the cloud provider extension/plugin in cluster-autoscaler which uses kwok to create fake nodes.

2. What does a template node exactly mean?

Template node is the base node yaml kwok provider uses to create a new node in the cluster.

3. What is the difference between static template nodes and dynamic template nodes?

Static template nodes are template nodes created using the node yaml specified by the user in kwok-provider-templates ConfigMap while dynamic template nodes are template nodes based on the node yaml of the current running nodes in the cluster.

4. Can I use both static and dynamic template nodes together?

As of now, no you can't (but it's an interesting idea). If you have a specific usecase, please create an issue and we can talk more there!

5. What is the difference between kwok provider config and template nodes config?

kwok provider config is configuration to change the behavior of kwok provider (and not the underlying kwok toolkit) while template nodes config is the ConfigMap you can use to specify static node templates.

Gotchas

  1. kwok provider by default taints the template nodes with kwok-provider: true taint so that production workloads don't get scheduled on these nodes accidentally. You have to tolerate the taint to schedule your workload on the nodes created by the kwok provider. You can turn this off by setting nodes.skipTaint: true in the kwok provider config.
  2. Make sure the label/annotation for fromNodeLabelKey/fromNodeAnnotation in kwok provider config is actually present on the template nodes. If it isn't present on the template nodes, kwok provider will not be able to create new nodes.
  3. Note that kwok provider makes the following changes to all the template nodes: (pseudocode)
node.status.nodeInfo.kubeletVersion = "fake"
node.annotations["kwok.x-k8s.io/node"] = "fake"
node.annotations["cluster-autoscaler.kwok.nodegroup/name"] = "<name-of-the-nodegroup>"
node.spec.providerID = "kwok:<name-of-the-node>"
node.spec.taints = append(node.spec.taints, {
		key:    "kwok-provider",
		value:  "true",
		effect: "NoSchedule",
	})

I have a problem/suggestion/question/idea/feature request. What should I do?

Awesome! Please:

Please don't think too much about creating an issue. We can always close it if it doesn't make sense.

What is not supported?

  • Creating kwok nodegroups based on kubernetes/hostname node label. Why? Imagine you have a Deployment (replicas: 2) with pod anti-affinity on the kubernetes/hostname label like this: Imagine you have only 2 unique hostnames values for kubernetes/hostname node label in your cluster:

    • hostname1
    • hostname2

    If you increase the number of replicas in the Deployment to 3, CA creates a fake node internally and runs simulations on it to decide if it should scale up. This fake node has kubernetes/hostname set to the name of the fake node which looks like template-node-xxxx-xxxx (second xxxx is random). Since the value of kubernetes/hostname on the fake node is not hostname1 or hostname2, CA thinks it can schedule the Pending pod on the fake node and hence keeps on scaling up to infinity (or until it can't).

Troubleshooting

  1. Pods are still stuck in Running even after CA has cleaned up all the kwok nodes
    • kwok provider doesn't drain the nodes when it deletes them. It just deletes the nodes. You should see pods running on these nodes change from Running state to Pending state in a minute or two. But if you don't, try scaling down your workload and scaling it up again. If the issue persists, please create an issue 🙏.

I want to contribute

Thank you ❤️

It is expected that you know how to build and run CA locally. If you don't, I recommend starting from the Makefile. Check the CA FAQ to know more about CA in general (including info around building CA and submitting a PR). CA is a big and complex project. If you have any questions or if you get stuck anywhere, reach out for help.

Get yourself familiar with the kwok project

Check https://kwok.sigs.k8s.io/

Try out the kwok provider

Go through the README.

Look for a good first issue

Check this filter for good first issues around kwok provider.

Reach out for help if you get stuck

You can get help in the following ways:

  • Mention @vadasambar in the issue/PR you are working on.
  • Start a slack thread in #sig-autoscaling mentioning @vadasambar (to join Kubernetes slack click here).
  • Add it to the weekly sig-autoscaling meeting agenda (happens on Mondays)