Skip to content

Commit

Permalink
Add solutions to exercises 1.2.6 58-59.
Browse files Browse the repository at this point in the history
  • Loading branch information
l0stman committed Mar 15, 2012
1 parent 04abd12 commit dbbc48b
Showing 1 changed file with 35 additions and 1 deletion.
36 changes: 35 additions & 1 deletion chap1/1.2/1.2.6/1.2.6.tex
Expand Up @@ -1098,5 +1098,39 @@
\end{eqnarray*}

And finally
\[ a_m = \frac{(-1)^m}{m!} \sum_{k\ge 1} (-1)^k {m-1 \choose k-1}\ln k.\]
\[ a_m = \frac{(-1)^m}{m!} \sum_{k\ge 1} (-1)^k {m-1 \choose k-1}\ln
k.\]

\newpar{58} Let's show the property by induction on $n$. If $n=0$, we
have
\[ 1 = \prod_{k=0}^{-1} (1+q^k x) = \sum_k {0 \choose k} q^{k(k-1)/2}
x^k.\]

Suppose we have the property for $n$ by induction we have
\begin{eqnarray*}
\prod_{k=0}^n(1+q^k x) &=& (1+q^n x) \sum_k {n \choose k}_q
q^{k(k-1)/2}x^k \\
&=& \sum_k {n \choose k}_q q^{k(k-1)/2}x^k + \sum_k {n \choose k-1}_q
q^{(k-1)(k-2)/2 + n} x^k \\
&=& \sum_k {n \choose k}_q \left(1 + \frac{1-q^k}{1-q^{n-k+1}}
q^{n-k+1}\right) q^{k(k-1)/2}x^k \\
&=& \sum_k {n+1 \choose k}_q q^{k(k-1)/2} x^k
\end{eqnarray*}

\newpar{59} Let's show by induction on $n \ge 0$ that we have
\[ A_{nk} = k {n+1 \choose k+1} + {n \choose k}.\]

We have
\[ A_{0k} = \delta_{0k} = k {1 \choose k+1} + {0 \choose k}.\]

Suppose the property is true for $n$, then we have
\begin{eqnarray*}
A_{(n-1)k} + A_{(n-1)(k-1)} + {n \choose k} &=& k {n \choose k+1} +
{n-1 \choose k} + (k-1) {n \choose k} + \\ && {n-1 \choose k-1} + {n
\choose k} \\
&=& k \left( {n \choose k+1} + {n \choose k} \right) + {n-1 \choose
k} + \\ && {n-1 \choose k-1} \\
&=& k {n+1 \choose k+1} + {n \choose k}
\end{eqnarray*}

\end{document}

0 comments on commit dbbc48b

Please sign in to comment.