@@ -287,7 +287,7 @@ a simple function with a multiple of a characteristic function and that the inte
287
287
of their images is a subset of `{0}`).
288
288
-/
289
289
@[elab_as_eliminator]
290
- lemma integrable.induction { P : (α → E) → Prop }
290
+ lemma integrable.induction ( P : (α → E) → Prop )
291
291
(h_ind : ∀ (c : E) ⦃s⦄, is_measurable s → μ s < ⊤ → P (s.indicator (λ _, c)))
292
292
(h_sum : ∀ ⦃f g : α → E⦄, set.univ ⊆ f ⁻¹' {0 } ∪ g ⁻¹' {0 } → measurable f → measurable g →
293
293
integrable f μ → integrable g μ → P f → P g → P (f + g))
@@ -464,6 +464,142 @@ lemma continuous_at.integral_sub_linear_is_o_ae
464
464
is_o (λ s, ∫ x in s, f x ∂μ - (μ s).to_real • f a) (λ s, (μ s).to_real) ((𝓝 a).lift' powerset) :=
465
465
(ha.mono_left inf_le_left).integral_sub_linear_is_o_ae hfm (μ.finite_at_nhds a)
466
466
467
+ section
468
+ /-! ### Continuous linear maps composed with integration
469
+
470
+ The goal of this section is to prove that integration commutes with continuous linear maps.
471
+ The first step is to prove that, given a function `φ : α → E` which is measurable and integrable,
472
+ and a continuous linear map `L : E →L[ℝ] F`, the function `λ a, L(φ a)` is also measurable
473
+ and integrable. Note we cannot write this as `L ∘ φ` since the type of `L` is not an actual
474
+ function type.
475
+
476
+ The next step is translate this to `l1`, replacing the function `φ` by a term with type
477
+ `α →₁[μ] E` (an equivalence class of integrable functions).
478
+ The corresponding "composition" is `L.comp_l1 φ : α →₁[μ] F`. This is then upgraded to
479
+ a linear map `L.comp_l1ₗ : (α →₁[μ] E) →ₗ[ℝ] (α →₁[μ] F)` and a continuous linear map
480
+ `L.comp_l1L : (α →₁[μ] E) →L[ℝ] (α →₁[μ] F)`.
481
+
482
+ Then we can prove the commutation result using continuity of all relevant operations
483
+ and the result on simple functions.
484
+ -/
485
+
486
+ variables {μ : measure α} [normed_group E] [normed_space ℝ E] [normed_group F] [normed_space ℝ F]
487
+
488
+ namespace continuous_linear_map
489
+
490
+ lemma integrable_comp {φ : α → E} (L : E →L[ℝ] F) (φ_int : integrable φ μ) :
491
+ integrable (λ (a : α), L (φ a)) μ :=
492
+ ((integrable.norm φ_int).const_mul ∥L∥).mono' (eventually_of_forall $ λ a, L.le_op_norm (φ a))
493
+
494
+ variables [second_countable_topology E] [measurable_space E] [borel_space E]
495
+
496
+ lemma norm_comp_l1_apply_le (φ : α →₁[μ] E) (L : E →L[ℝ] F) : ∀ᵐ a ∂μ, ∥L (φ a)∥ ≤ ∥L∥*∥φ a∥ :=
497
+ eventually_of_forall (λ a, L.le_op_norm (φ a))
498
+
499
+ section
500
+ variables [measurable_space F] [borel_space F] [second_countable_topology F]
501
+
502
+ /-- Composing `φ : α →₁[μ] E` with `L : E →L[ℝ] F`. -/
503
+ def comp_l1 (L : E →L[ℝ] F) (φ : α →₁[μ] E) : α →₁[μ] F :=
504
+ l1.of_fun (λ a, L (φ a)) (L.measurable_comp φ.measurable) (L.integrable_comp φ.integrable)
505
+
506
+ lemma comp_l1_apply (L : E →L[ℝ] F) (φ : α →₁[μ] E) : ∀ᵐ a ∂μ, (L.comp_l1 φ) a = L (φ a) :=
507
+ l1.to_fun_of_fun _ _ _
508
+
509
+ end
510
+
511
+ lemma integrable_comp_l1 (L : E →L[ℝ] F) (φ : α →₁[μ] E) : integrable (λ a, L (φ a)) μ :=
512
+ L.integrable_comp φ.integrable
513
+
514
+ variables [measurable_space F]
515
+
516
+ lemma measurable_comp_l1 [borel_space F] (L : E →L[ℝ] F) (φ : α →₁[μ] E) :
517
+ measurable (λ a, L (φ a)) := L.measurable.comp φ.measurable
518
+
519
+ variables [borel_space F] [second_countable_topology F]
520
+
521
+ lemma integral_comp_l1 [complete_space F] (L : E →L[ℝ] F) (φ : α →₁[μ] E) :
522
+ ∫ a, (L.comp_l1 φ) a ∂μ = ∫ a, L (φ a) ∂μ :=
523
+ by simp [comp_l1]
524
+
525
+ /-- Composing `φ : α →₁[μ] E` with `L : E →L[ℝ] F`, seen as a `ℝ`-linear map on `α →₁[μ] E`. -/
526
+ def comp_l1ₗ (L : E →L[ℝ] F) : (α →₁[μ] E) →ₗ[ℝ] (α →₁[μ] F) :=
527
+ { to_fun := λ φ, L.comp_l1 φ,
528
+ map_add' := begin
529
+ intros f g,
530
+ dsimp [comp_l1],
531
+ rw [← l1.of_fun_add, l1.of_fun_eq_of_fun],
532
+ apply (l1.add_to_fun f g).mono,
533
+ intros a ha,
534
+ simp only [ha, pi.add_apply, L.map_add]
535
+ end ,
536
+ map_smul' := begin
537
+ intros c f,
538
+ dsimp [comp_l1],
539
+ rw [← l1.of_fun_smul, l1.of_fun_eq_of_fun],
540
+ apply (l1.smul_to_fun c f).mono,
541
+ intros a ha,
542
+ simp only [ha, pi.smul_apply, continuous_linear_map.map_smul]
543
+ end }
544
+
545
+ lemma norm_comp_l1_le (φ : α →₁[μ] E) (L : E →L[ℝ] F) : ∥L.comp_l1 φ∥ ≤ ∥L∥*∥φ∥ :=
546
+ begin
547
+ erw l1.norm_of_fun_eq_integral_norm,
548
+ calc
549
+ ∫ a, ∥L (φ a)∥ ∂μ ≤ ∫ a, ∥L∥ *∥φ a∥ ∂μ : integral_mono (L.measurable.comp φ.measurable).norm
550
+ (L.integrable_comp_l1 φ).norm (φ.measurable_norm.const_mul $ ∥L∥)
551
+ (φ.integrable_norm.const_mul $ ∥L∥) (L.norm_comp_l1_apply_le φ)
552
+ ... = ∥L∥ * ∥φ∥ : by rw [integral_mul_left, φ.norm_eq_integral_norm]
553
+ end
554
+
555
+ /-- Composing `φ : α →₁[μ] E` with `L : E →L[ℝ] F`, seen as a continuous `ℝ`-linear map on
556
+ `α →₁[μ] E`. -/
557
+ def comp_l1L (L : E →L[ℝ] F) : (α →₁[μ] E) →L[ℝ] (α →₁[μ] F) :=
558
+ linear_map.mk_continuous L.comp_l1ₗ (∥L∥) (λ φ, L.norm_comp_l1_le φ)
559
+
560
+ lemma norm_compl1L_le (L : E →L[ℝ] F) : ∥(L.comp_l1L : (α →₁[μ] E) →L[ℝ] (α →₁[μ] F))∥ ≤ ∥L∥ :=
561
+ op_norm_le_bound _ (norm_nonneg _) (λ φ, L.norm_comp_l1_le φ)
562
+
563
+ variables [complete_space F]
564
+
565
+ lemma continuous_integral_comp_l1 (L : E →L[ℝ] F) :
566
+ continuous (λ (φ : α →₁[μ] E), ∫ (a : α), L (φ a) ∂μ) :=
567
+ begin
568
+ rw ← funext L.integral_comp_l1,
569
+ exact continuous_integral.comp L.comp_l1L.continuous
570
+ end
571
+
572
+ variables [complete_space E]
573
+
574
+ lemma integral_comp_comm (L : E →L[ℝ] F) {φ : α → E} (φ_meas : measurable φ)
575
+ (φ_int : integrable φ μ) : ∫ a, L (φ a) ∂μ = L (∫ a, φ a ∂μ) :=
576
+ begin
577
+ apply integrable.induction (λ φ, ∫ a, L (φ a) ∂μ = L (∫ a, φ a ∂μ)),
578
+ { intros e s s_meas s_finite,
579
+ rw [integral_indicator_const e s_meas, continuous_linear_map.map_smul,
580
+ ← integral_indicator_const (L e) s_meas],
581
+ congr' 1 with a,
582
+ rw set.indicator_comp_of_zero L.map_zero },
583
+ { intros f g H f_meas g_meas f_int g_int hf hg,
584
+ simp [L.map_add, integral_add f_meas f_int g_meas g_int,
585
+ integral_add (L.measurable_comp f_meas) (L.integrable_comp f_int)
586
+ (L.measurable_comp g_meas) (L.integrable_comp g_int), hf, hg] },
587
+ { exact is_closed_eq L.continuous_integral_comp_l1 (L.continuous.comp continuous_integral) },
588
+ { intros f g hfg f_meas g_meas f_int hf,
589
+ convert hf using 1 ; clear hf,
590
+ { exact integral_congr_ae (L.measurable.comp g_meas) (L.measurable.comp f_meas) (hfg.fun_comp L).symm },
591
+ { rw integral_congr_ae g_meas f_meas hfg.symm } },
592
+ all_goals { assumption }
593
+ end
594
+
595
+ lemma integral_comp_l1_comm (L : E →L[ℝ] F) (φ : α →₁[μ] E) :
596
+ ∫ a, L (φ a) ∂μ = L (∫ a, φ a ∂μ) :=
597
+ L.integral_comp_comm φ.measurable φ.integrable
598
+
599
+ end continuous_linear_map
600
+
601
+ end
602
+
467
603
/-
468
604
namespace integrable
469
605
0 commit comments