Skip to content

Commit

Permalink
chore(*): a few lemmas about `range_splitting (#10016)
Browse files Browse the repository at this point in the history
  • Loading branch information
urkud committed Oct 28, 2021
1 parent b9ff26b commit 0d6548f
Show file tree
Hide file tree
Showing 3 changed files with 27 additions and 2 deletions.
4 changes: 4 additions & 0 deletions src/data/equiv/set.lean
Expand Up @@ -447,6 +447,10 @@ begin
simp [apply_of_injective_symm f hf],
end

lemma coe_of_injective_symm {α β} (f : α → β) (hf : injective f) :
((of_injective f hf).symm : range f → α) = range_splitting f :=
by { ext ⟨y, x, rfl⟩, apply hf, simp [apply_range_splitting f] }

@[simp] lemma self_comp_of_injective_symm {α β} (f : α → β) (hf : injective f) :
f ∘ ((of_injective f hf).symm) = coe :=
funext (λ x, apply_of_injective_symm f hf x)
Expand Down
12 changes: 12 additions & 0 deletions src/data/set/basic.lean
Expand Up @@ -1846,6 +1846,8 @@ funext $ λ i, rfl
@[simp] lemma range_factorization_coe (f : ι → β) (a : ι) :
(range_factorization f a : β) = f a := rfl

@[simp] lemma coe_comp_range_factorization (f : ι → β) : coe ∘ range_factorization f = f := rfl

lemma surjective_onto_range : surjective (range_factorization f) :=
λ ⟨_, ⟨i, rfl⟩⟩, ⟨i, rfl⟩

Expand Down Expand Up @@ -1916,6 +1918,16 @@ lemma left_inverse_range_splitting (f : α → β) :
lemma range_splitting_injective (f : α → β) : injective (range_splitting f) :=
(left_inverse_range_splitting f).injective

lemma right_inverse_range_splitting {f : α → β} (h : injective f) :
right_inverse (range_factorization f) (range_splitting f) :=
(left_inverse_range_splitting f).right_inverse_of_injective $
λ x y hxy, h $ subtype.ext_iff.1 hxy

lemma preimage_range_splitting {f : α → β} (hf : injective f) :
preimage (range_splitting f) = image (range_factorization f) :=
(image_eq_preimage_of_inverse (right_inverse_range_splitting hf)
(left_inverse_range_splitting f)).symm

lemma is_compl_range_some_none (α : Type*) :
is_compl (range (some : α → option α)) {none} :=
⟨λ x ⟨⟨a, ha⟩, (hn : x = none)⟩, option.some_ne_none _ (ha.trans hn),
Expand Down
13 changes: 11 additions & 2 deletions src/logic/function/basic.lean
Expand Up @@ -231,6 +231,16 @@ theorem right_inverse.injective {f : α → β} {g : β → α} (h : right_inver
injective f :=
h.left_inverse.injective

theorem left_inverse.right_inverse_of_injective {f : α → β} {g : β → α} (h : left_inverse f g)
(hf : injective f) :
right_inverse f g :=
λ x, hf $ h (f x)

theorem left_inverse.right_inverse_of_surjective {f : α → β} {g : β → α} (h : left_inverse f g)
(hg : surjective g) :
right_inverse f g :=
λ x, let ⟨y, hy⟩ := hg x in hy ▸ congr_arg g (h y)

theorem left_inverse.eq_right_inverse {f : α → β} {g₁ g₂ : β → α} (h₁ : left_inverse g₁ f)
(h₂ : right_inverse g₂ f) :
g₁ = g₂ :=
Expand Down Expand Up @@ -316,8 +326,7 @@ lemma inv_fun_comp (hf : injective f) : inv_fun f ∘ f = id := funext $ left_in
end inv_fun

section inv_fun
variables {α : Type u} [i : nonempty α] {β : Sort v} {f : α → β}
include i
variables {α : Type u} [nonempty α] {β : Sort v} {f : α → β}

lemma injective.has_left_inverse (hf : injective f) : has_left_inverse f :=
⟨inv_fun f, left_inverse_inv_fun hf⟩
Expand Down

0 comments on commit 0d6548f

Please sign in to comment.