@@ -5,6 +5,7 @@ Authors: Kalle Kytölä
5
5
-/
6
6
import measure_theory.measure.finite_measure
7
7
import measure_theory.integral.average
8
+ import probability.conditional_probability
8
9
9
10
/-!
10
11
# Probability measures
@@ -116,6 +117,9 @@ subtype.coe_injective
116
117
@[simp] lemma coe_fn_univ (ν : probability_measure Ω) : ν univ = 1 :=
117
118
congr_arg ennreal.to_nnreal ν.prop.measure_univ
118
119
120
+ lemma coe_fn_univ_ne_zero (ν : probability_measure Ω) : ν univ ≠ 0 :=
121
+ by simp only [coe_fn_univ, ne.def, one_ne_zero, not_false_iff]
122
+
119
123
/-- A probability measure can be interpreted as a finite measure. -/
120
124
def to_finite_measure (μ : probability_measure Ω) : finite_measure Ω := ⟨μ, infer_instance⟩
121
125
@@ -130,11 +134,32 @@ def to_finite_measure (μ : probability_measure Ω) : finite_measure Ω := ⟨μ
130
134
by rw [← coe_fn_comp_to_finite_measure_eq_coe_fn,
131
135
finite_measure.ennreal_coe_fn_eq_coe_fn_to_measure, coe_comp_to_finite_measure_eq_coe]
132
136
133
- @[ext] lemma extensionality (μ ν : probability_measure Ω)
137
+ lemma apply_mono (μ : probability_measure Ω) {s₁ s₂ : set Ω} (h : s₁ ⊆ s₂) :
138
+ μ s₁ ≤ μ s₂ :=
139
+ begin
140
+ rw ← coe_fn_comp_to_finite_measure_eq_coe_fn,
141
+ exact measure_theory.finite_measure.apply_mono _ h,
142
+ end
143
+
144
+ lemma nonempty_of_probability_measure (μ : probability_measure Ω) : nonempty Ω :=
145
+ begin
146
+ by_contra maybe_empty,
147
+ have zero : (μ : measure Ω) univ = 0 ,
148
+ by rw [univ_eq_empty_iff.mpr (not_nonempty_iff.mp maybe_empty), measure_empty],
149
+ rw measure_univ at zero,
150
+ exact zero_ne_one zero.symm,
151
+ end
152
+
153
+ @[ext] lemma eq_of_forall_measure_apply_eq (μ ν : probability_measure Ω)
154
+ (h : ∀ (s : set Ω), measurable_set s → (μ : measure Ω) s = (ν : measure Ω) s) :
155
+ μ = ν :=
156
+ by { ext1, ext1 s s_mble, exact h s s_mble, }
157
+
158
+ lemma eq_of_forall_apply_eq (μ ν : probability_measure Ω)
134
159
(h : ∀ (s : set Ω), measurable_set s → μ s = ν s) :
135
160
μ = ν :=
136
161
begin
137
- ext1, ext1 s s_mble,
162
+ ext1 s s_mble,
138
163
simpa [ennreal_coe_fn_eq_coe_fn_to_measure] using congr_arg (coe : ℝ≥0 → ℝ≥0 ∞) (h s s_mble),
139
164
end
140
165
268
293
269
294
lemma self_eq_mass_smul_normalize : μ = μ.mass • μ.normalize.to_finite_measure :=
270
295
begin
271
- ext s s_mble,
296
+ apply eq_of_forall_apply_eq,
297
+ intros s s_mble,
272
298
rw [μ.self_eq_mass_mul_normalize s, coe_fn_smul_apply, smul_eq_mul,
273
299
probability_measure.coe_fn_comp_to_finite_measure_eq_coe_fn],
274
300
end
@@ -299,10 +325,11 @@ end
299
325
{m0 : measurable_space Ω} (μ : probability_measure Ω) :
300
326
μ.to_finite_measure.normalize = μ :=
301
327
begin
302
- ext s s_mble,
328
+ apply probability_measure.eq_of_forall_apply_eq,
329
+ intros s s_mble,
303
330
rw μ.to_finite_measure.normalize_eq_of_nonzero μ.to_finite_measure_nonzero s,
304
331
simp only [probability_measure.mass_to_finite_measure, inv_one, one_mul,
305
- probability_measure.coe_fn_comp_to_finite_measure_eq_coe_fn],
332
+ probability_measure.coe_fn_comp_to_finite_measure_eq_coe_fn],
306
333
end
307
334
308
335
/-- Averaging with respect to a finite measure is the same as integraing against
0 commit comments