@@ -33,16 +33,14 @@ The average of all elements of the group `G`, considered as an element of `monoi
33
33
noncomputable def average : monoid_algebra k G :=
34
34
⅟(fintype.card G : k) • ∑ g : G, of k G g
35
35
36
- lemma average_def : average k G = ⅟(fintype.card G : k) • ∑ g : G, of k G g := rfl
37
-
38
36
/--
39
37
`average k G` is invariant under left multiplication by elements of `G`.
40
38
-/
41
39
@[simp]
42
40
theorem mul_average_left (g : G) :
43
41
(finsupp.single g 1 * average k G : monoid_algebra k G) = average k G :=
44
42
begin
45
- simp only [mul_one, finset.mul_sum, algebra.mul_smul_comm, average_def , monoid_algebra.of_apply,
43
+ simp only [mul_one, finset.mul_sum, algebra.mul_smul_comm, average , monoid_algebra.of_apply,
46
44
finset.sum_congr, monoid_algebra.single_mul_single],
47
45
set f : G → monoid_algebra k G := λ x, finsupp.single x 1 ,
48
46
show ⅟ ↑(fintype.card G) • ∑ (x : G), f (g * x) = ⅟ ↑(fintype.card G) • ∑ (x : G), f x,
56
54
theorem mul_average_right (g : G) :
57
55
average k G * finsupp.single g 1 = average k G :=
58
56
begin
59
- simp only [mul_one, finset.sum_mul, algebra.smul_mul_assoc, average_def , monoid_algebra.of_apply,
57
+ simp only [mul_one, finset.sum_mul, algebra.smul_mul_assoc, average , monoid_algebra.of_apply,
60
58
finset.sum_congr, monoid_algebra.single_mul_single],
61
59
set f : G → monoid_algebra k G := λ x, finsupp.single x 1 ,
62
60
show ⅟ ↑(fintype.card G) • ∑ (x : G), f (x * g) = ⅟ ↑(fintype.card G) • ∑ (x : G), f x,
@@ -111,7 +109,7 @@ The `average_map` acts as the identity on the subspace of invariants.
111
109
theorem average_map_id (v : V) (hv : v ∈ invariants ρ) : average_map ρ v = v :=
112
110
begin
113
111
rw mem_invariants at hv,
114
- simp [average_def , map_sum, hv, finset.card_univ, nsmul_eq_smul_cast k _ v, smul_smul],
112
+ simp [average , map_sum, hv, finset.card_univ, nsmul_eq_smul_cast k _ v, smul_smul],
115
113
end
116
114
117
115
theorem is_proj_average_map : linear_map.is_proj ρ.invariants ρ.average_map :=
0 commit comments