@@ -279,13 +279,23 @@ add_decl_doc add_hom.comp
279
279
/-- Composition of additive monoid morphisms as an additive monoid morphism. -/
280
280
add_decl_doc add_monoid_hom.comp
281
281
282
- @[simp, to_additive] lemma one_hom.comp_apply [has_one M] [has_one N] [has_one P]
282
+ @[simp, to_additive] lemma one_hom.coe_comp [has_one M] [has_one N] [has_one P]
283
+ (g : one_hom N P) (f : one_hom M N) :
284
+ ⇑(g.comp f) = g ∘ f := rfl
285
+ @[simp, to_additive] lemma mul_hom.coe_comp [has_mul M] [has_mul N] [has_mul P]
286
+ (g : mul_hom N P) (f : mul_hom M N) :
287
+ ⇑(g.comp f) = g ∘ f := rfl
288
+ @[simp, to_additive] lemma monoid_hom.coe_comp [monoid M] [monoid N] [monoid P]
289
+ (g : N →* P) (f : M →* N) :
290
+ ⇑(g.comp f) = g ∘ f := rfl
291
+
292
+ @[to_additive] lemma one_hom.comp_apply [has_one M] [has_one N] [has_one P]
283
293
(g : one_hom N P) (f : one_hom M N) (x : M) :
284
294
g.comp f x = g (f x) := rfl
285
- @[simp, to_additive] lemma mul_hom.comp_apply [has_mul M] [has_mul N] [has_mul P]
295
+ @[to_additive] lemma mul_hom.comp_apply [has_mul M] [has_mul N] [has_mul P]
286
296
(g : mul_hom N P) (f : mul_hom M N) (x : M) :
287
297
g.comp f x = g (f x) := rfl
288
- @[simp, to_additive] lemma monoid_hom.comp_apply [monoid M] [monoid N] [monoid P]
298
+ @[to_additive] lemma monoid_hom.comp_apply [monoid M] [monoid N] [monoid P]
289
299
(g : N →* P) (f : M →* N) (x : M) :
290
300
g.comp f x = g (f x) := rfl
291
301
0 commit comments