Skip to content
This repository was archived by the owner on Jul 24, 2024. It is now read-only.

Commit 1b1ad15

Browse files
committed
refactor(measure_theory/*): rename is_(null_)?measurable to (null_)?measurable_set (#6001)
Search & replace: * `is_null_measurable` → `null_measurable`; * `is_measurable` → `measurable_set'`; * `measurable_set_set` → `measurable_set`; * `measurable_set_spanning_sets` → `measurable_spanning_sets`; * `measurable_set_superset` → `measurable_superset`.
1 parent 2b2edc9 commit 1b1ad15

22 files changed

+890
-879
lines changed

src/analysis/calculus/fderiv_measurable.lean

Lines changed: 10 additions & 10 deletions
Original file line numberDiff line numberDiff line change
@@ -13,7 +13,7 @@ import measure_theory.borel_space
1313
In this file we prove that the derivative of any function with complete codomain is a measurable
1414
function. Namely, we prove:
1515
16-
* `is_measurable_set_of_differentiable_at`: the set `{x | differentiable_at 𝕜 f x}` is measurable;
16+
* `measurable_set_of_differentiable_at`: the set `{x | differentiable_at 𝕜 f x}` is measurable;
1717
* `measurable_fderiv`: the function `fderiv 𝕜 f` is measurable;
1818
* `measurable_fderiv_apply_const`: for a fixed vector `y`, the function `λ x, fderiv 𝕜 f x y`
1919
is measurable;
@@ -392,21 +392,21 @@ variables (𝕜 f)
392392

393393
/-- The set of differentiability points of a function, with derivative in a given complete set,
394394
is Borel-measurable. -/
395-
theorem is_measurable_set_of_differentiable_at_of_is_complete
395+
theorem measurable_set_of_differentiable_at_of_is_complete
396396
{K : set (E →L[𝕜] F)} (hK : is_complete K) :
397-
is_measurable {x | differentiable_at 𝕜 f x ∧ fderiv 𝕜 f x ∈ K} :=
398-
by simp [differentiable_set_eq_D K hK, D, is_open_B.is_measurable, is_measurable.Inter_Prop,
399-
is_measurable.Inter, is_measurable.Union]
397+
measurable_set {x | differentiable_at 𝕜 f x ∧ fderiv 𝕜 f x ∈ K} :=
398+
by simp [differentiable_set_eq_D K hK, D, is_open_B.measurable_set, measurable_set.Inter_Prop,
399+
measurable_set.Inter, measurable_set.Union]
400400

401401
variable [complete_space F]
402402

403403
/-- The set of differentiability points of a function taking values in a complete space is
404404
Borel-measurable. -/
405-
theorem is_measurable_set_of_differentiable_at :
406-
is_measurable {x | differentiable_at 𝕜 f x} :=
405+
theorem measurable_set_of_differentiable_at :
406+
measurable_set {x | differentiable_at 𝕜 f x} :=
407407
begin
408408
have : is_complete (univ : set (E →L[𝕜] F)) := complete_univ,
409-
convert is_measurable_set_of_differentiable_at_of_is_complete 𝕜 f this,
409+
convert measurable_set_of_differentiable_at_of_is_complete 𝕜 f this,
410410
simp
411411
end
412412

@@ -417,8 +417,8 @@ begin
417417
{x | (0 : E →L[𝕜] F) ∈ s} ∩ {x | ¬differentiable_at 𝕜 f x} :=
418418
set.ext (λ x, mem_preimage.trans fderiv_mem_iff),
419419
rw this,
420-
exact (is_measurable_set_of_differentiable_at_of_is_complete _ _ hs.is_complete).union
421-
((is_measurable.const _).inter (is_measurable_set_of_differentiable_at _ _).compl)
420+
exact (measurable_set_of_differentiable_at_of_is_complete _ _ hs.is_complete).union
421+
((measurable_set.const _).inter (measurable_set_of_differentiable_at _ _).compl)
422422
end
423423

424424
lemma measurable_fderiv_apply_const [measurable_space F] [borel_space F] (y : E) :

src/analysis/special_functions/pow.lean

Lines changed: 7 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -603,8 +603,8 @@ section measurability_real
603603

604604
lemma real.measurable_rpow : measurable (λ p : ℝ × ℝ, p.1 ^ p.2) :=
605605
begin
606-
have h_meas : is_measurable {p : ℝ × ℝ | p.1 = 0} :=
607-
(is_closed_singleton.preimage continuous_fst).is_measurable,
606+
have h_meas : measurable_set {p : ℝ × ℝ | p.1 = 0} :=
607+
(is_closed_singleton.preimage continuous_fst).measurable_set,
608608
refine measurable_of_measurable_union_cover {p : ℝ × ℝ | p.1 = 0} {p : ℝ × ℝ | p.10} h_meas
609609
h_meas.compl _ _ _,
610610
{ intro x, simp [em (x.fst = 0)], },
@@ -621,7 +621,7 @@ begin
621621
change measurable ((λ x : ℝ, ite (x = 0) (1:ℝ) (0:ℝ))
622622
∘ (λ a : {p : ℝ × ℝ | p.fst = 0}, (a:ℝ×ℝ).snd)),
623623
refine measurable.comp _ (measurable_snd.comp measurable_subtype_coe),
624-
exact measurable.ite (is_measurable_singleton 0) measurable_const measurable_const, },
624+
exact measurable.ite (measurable_set_singleton 0) measurable_const measurable_const, },
625625
{ refine continuous.measurable _,
626626
rw continuous_iff_continuous_at,
627627
intro x,
@@ -1558,11 +1558,11 @@ begin
15581558
refine ennreal.measurable_of_measurable_nnreal_prod _ _,
15591559
{ simp_rw ennreal.coe_rpow_def,
15601560
refine measurable.ite _ measurable_const nnreal.measurable_rpow.ennreal_coe,
1561-
exact is_measurable.inter (measurable_fst (is_measurable_singleton 0))
1562-
(measurable_snd is_measurable_Iio), },
1561+
exact measurable_set.inter (measurable_fst (measurable_set_singleton 0))
1562+
(measurable_snd measurable_set_Iio), },
15631563
{ simp_rw ennreal.top_rpow_def,
1564-
refine measurable.ite is_measurable_Ioi measurable_const _,
1565-
exact measurable.ite (is_measurable_singleton 0) measurable_const measurable_const, },
1564+
refine measurable.ite measurable_set_Ioi measurable_const _,
1565+
exact measurable.ite (measurable_set_singleton 0) measurable_const measurable_const, },
15661566
end
15671567

15681568
lemma measurable.ennreal_rpow {α} [measurable_space α] {f : α → ennreal} (hf : measurable f)

src/measure_theory/ae_measurable_sequence.lean

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -89,15 +89,15 @@ end
8989

9090
end mem_ae_seq_set
9191

92-
lemma ae_seq_set_is_measurable {hf : ∀ i, ae_measurable (f i) μ} :
93-
is_measurable (ae_seq_set hf p) :=
94-
(is_measurable_to_measurable _ _).compl
92+
lemma ae_seq_set_measurable_set {hf : ∀ i, ae_measurable (f i) μ} :
93+
measurable_set (ae_seq_set hf p) :=
94+
(measurable_set_to_measurable _ _).compl
9595

9696
lemma measurable (hf : ∀ i, ae_measurable (f i) μ) (p : α → (ι → β) → Prop)
9797
(i : ι) :
9898
measurable (ae_seq hf p i) :=
9999
begin
100-
refine measurable.ite ae_seq_set_is_measurable (hf i).measurable_mk _,
100+
refine measurable.ite ae_seq_set_measurable_set (hf i).measurable_mk _,
101101
by_cases hα : nonempty α,
102102
{ exact @measurable_const _ _ _ _ (⟨f i hα.some⟩ : nonempty β).some },
103103
{ exact measurable_of_not_nonempty hα _ }

src/measure_theory/bochner_integration.lean

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -235,7 +235,7 @@ begin
235235
refine finset.sum_image' _ (assume b hb, _),
236236
rcases mem_range.1 hb with ⟨a, rfl⟩,
237237
rw [map_preimage_singleton, ← sum_measure_preimage_singleton _
238-
(λ _ _, f.is_measurable_preimage _)],
238+
(λ _ _, f.measurable_set_preimage _)],
239239
-- Now we use `hf : integrable f μ` to show that `ennreal.to_real` is additive.
240240
by_cases ha : g (f a) = 0,
241241
{ simp only [ha, smul_zero],
@@ -1509,7 +1509,7 @@ begin
15091509
((integrable_map_measure hfm.ae_measurable hφ).1 hfi),
15101510
ext1 i,
15111511
simp only [simple_func.approx_on_comp, simple_func.integral, measure.map_apply, hφ,
1512-
simple_func.is_measurable_preimage, ← preimage_comp, simple_func.coe_comp],
1512+
simple_func.measurable_set_preimage, ← preimage_comp, simple_func.coe_comp],
15131513
refine (finset.sum_subset (simple_func.range_comp_subset_range _ hφ) (λ y _ hy, _)).symm,
15141514
rw [simple_func.mem_range, ← set.preimage_singleton_eq_empty, simple_func.coe_comp] at hy,
15151515
simp [hy]

0 commit comments

Comments
 (0)