This repository was archived by the owner on Jul 24, 2024. It is now read-only.
File tree Expand file tree Collapse file tree 2 files changed +12
-5
lines changed Expand file tree Collapse file tree 2 files changed +12
-5
lines changed Original file line number Diff line number Diff line change @@ -101,6 +101,10 @@ lemma eventually_gt_at_top [preorder α] [no_max_order α] (a : α) :
101
101
∀ᶠ x in at_top, a < x :=
102
102
Ioi_mem_at_top a
103
103
104
+ lemma eventually_ne_at_top [preorder α] [no_max_order α] (a : α) :
105
+ ∀ᶠ x in at_top, x ≠ a :=
106
+ (eventually_gt_at_top a).mono (λ x hx, hx.ne.symm)
107
+
104
108
lemma eventually_lt_at_bot [preorder α] [no_min_order α] (a : α) :
105
109
∀ᶠ x in at_bot, x < a :=
106
110
Iio_mem_at_bot a
Original file line number Diff line number Diff line change @@ -122,16 +122,19 @@ filter.ext_iff.2
122
122
@[simp] lemma univ_mem : univ ∈ f :=
123
123
f.univ_sets
124
124
125
- lemma mem_of_superset : ∀ {x y : set α}, x ∈ f → x ⊆ y → y ∈ f :=
126
- f.sets_of_superset
125
+ lemma mem_of_superset {x y : set α} (hx : x ∈ f) (hxy : x ⊆ y) : y ∈ f :=
126
+ f.sets_of_superset hx hxy
127
127
128
- lemma inter_mem : ∀ {s t}, s ∈ f → t ∈ f → s ∩ t ∈ f :=
129
- f.inter_sets
128
+ lemma inter_mem {s t : set α} (hs : s ∈ f) (ht : t ∈ f) : s ∩ t ∈ f :=
129
+ f.inter_sets hs ht
130
130
131
- @[simp] lemma inter_mem_iff {s t} : s ∩ t ∈ f ↔ s ∈ f ∧ t ∈ f :=
131
+ @[simp] lemma inter_mem_iff {s t : set α } : s ∩ t ∈ f ↔ s ∈ f ∧ t ∈ f :=
132
132
⟨λ h, ⟨mem_of_superset h (inter_subset_left s t),
133
133
mem_of_superset h (inter_subset_right s t)⟩, and_imp.2 inter_mem⟩
134
134
135
+ lemma diff_mem {s t : set α} (hs : s ∈ f) (ht : tᶜ ∈ f) : s \ t ∈ f :=
136
+ inter_mem hs ht
137
+
135
138
lemma univ_mem' (h : ∀ a, a ∈ s) : s ∈ f :=
136
139
mem_of_superset univ_mem (λ x _, h x)
137
140
You can’t perform that action at this time.
0 commit comments