|
| 1 | +/- |
| 2 | +Copyright (c) 2015 Microsoft Corporation. All rights reserved. |
| 3 | +Released under Apache 2.0 license as described in the file LICENSE. |
| 4 | +Authors: Leonardo de Moura |
| 5 | +
|
| 6 | +Elegant pairing function. |
| 7 | +-/ |
| 8 | +import data.nat.sqrt |
| 9 | +open prod decidable |
| 10 | + |
| 11 | +namespace nat |
| 12 | + |
| 13 | +def mkpair (a b : nat) : nat := |
| 14 | +if a < b then b*b + a else a*a + a + b |
| 15 | + |
| 16 | +def unpair (n : nat) : nat × nat := |
| 17 | +let s := sqrt n in |
| 18 | +if n - s*s < s then (n - s*s, s) else (s, n - s*s - s) |
| 19 | + |
| 20 | +theorem mkpair_unpair (n : nat) : mkpair (unpair n).1 (unpair n).2 = n := |
| 21 | +let s := sqrt n in |
| 22 | +by_cases |
| 23 | + (assume : n - s*s < s, by simp [unpair, mkpair, this, nat.add_sub_of_le sqrt_lower]) |
| 24 | + (assume h₁ : ¬ n - s*s < s, |
| 25 | + have s ≤ n - s*s, from le_of_not_gt h₁, |
| 26 | + have s + s*s ≤ n - s*s + s*s, from add_le_add_right this (s*s), |
| 27 | + have h₂ : s*s + s ≤ n, by rwa [nat.sub_add_cancel sqrt_lower, add_comm] at this, |
| 28 | + |
| 29 | + have n < (s + 1) * (s + 1), from sqrt_upper, |
| 30 | + have n < (s * s + s + s) + 1, by simp [mul_add, add_mul] at this; simp [this], |
| 31 | + have n - s*s ≤ s + s, from calc |
| 32 | + n - s*s ≤ (s*s + s + s) - s*s : nat.sub_le_sub_right (le_of_succ_le_succ this) (s*s) |
| 33 | + ... = (s*s + (s+s)) - s*s : by rewrite add_assoc |
| 34 | + ... = s + s : by rewrite nat.add_sub_cancel_left, |
| 35 | + have n - s*s - s ≤ s, from calc |
| 36 | + n - s*s - s ≤ (s + s) - s : nat.sub_le_sub_right this s |
| 37 | + ... = s : by rewrite nat.add_sub_cancel_left, |
| 38 | + have h₃ : ¬ s < n - s*s - s, from not_lt_of_ge this, |
| 39 | + begin |
| 40 | + simp [h₁, h₃, unpair, mkpair, -add_comm, -add_assoc], |
| 41 | + rewrite [nat.sub_sub, add_sub_of_le h₂] |
| 42 | + end) |
| 43 | + |
| 44 | +theorem unpair_mkpair (a b : nat) : unpair (mkpair a b) = (a, b) := |
| 45 | +by_cases |
| 46 | + (assume : a < b, |
| 47 | + have a + b * b < (b + 1) * (b + 1), |
| 48 | + from calc a + b * b < b + b * b : add_lt_add_right this _ |
| 49 | + ... ≤ b + b * b + (b + 1) : le_add_right _ _ |
| 50 | + ... = (b + 1) * (b + 1) : by simp [mul_add, add_mul], |
| 51 | + have sqrt_mkpair : sqrt (mkpair a b) = b, |
| 52 | + by simp [mkpair, *]; exact sqrt_eq (le_add_left _ _) this, |
| 53 | + have mkpair a b - b * b = a, by simp [mkpair, ‹a < b›, -add_comm, nat.add_sub_cancel_left], |
| 54 | + by simp [unpair, sqrt_mkpair, this, ‹a < b›]) |
| 55 | + (assume : ¬ a < b, |
| 56 | + have a + (b + a * a) < (a + 1) * (a + 1), |
| 57 | + from calc a + (b + a * a) ≤ a + (a + a * a) : |
| 58 | + add_le_add_left (add_le_add_right (le_of_not_gt this) _) _ |
| 59 | + ... < (a + 1) * (a + 1) : lt_of_succ_le $ by simp [mul_add, add_mul, succ_eq_add_one], |
| 60 | + have sqrt_mkpair : sqrt (mkpair a b) = a, |
| 61 | + by simp [mkpair, *]; exact sqrt_eq (le_add_of_nonneg_of_le (zero_le _) (le_add_left _ _)) this, |
| 62 | + have mkpair_sub : mkpair a b - a * a = a + b, |
| 63 | + by simp [mkpair, ‹¬ a < b›]; rw [←add_assoc, nat.add_sub_cancel], |
| 64 | + have ¬ a + b < a, from not_lt_of_ge $ le_add_right _ _, |
| 65 | + by simp [unpair, ‹¬ a < b›, sqrt_mkpair, mkpair_sub, this, nat.add_sub_cancel_left]) |
| 66 | + |
| 67 | +theorem unpair_lt_aux {n : nat} : n ≥ 1 → (unpair n).1 < n := |
| 68 | +assume : n ≥ 1, |
| 69 | +or.elim (nat.eq_or_lt_of_le this) |
| 70 | + (assume : 1 = n, by subst n; exact dec_trivial) |
| 71 | + (assume : n > 1, |
| 72 | + let s := sqrt n in |
| 73 | + by_cases |
| 74 | + (assume h : n - s*s < s, |
| 75 | + have n > 0, from lt_of_succ_lt ‹n > 1›, |
| 76 | + have sqrt n > 0, from sqrt_pos_of_pos this, |
| 77 | + have sqrt n * sqrt n > 0, from mul_pos this this, |
| 78 | + by simp [unpair, h]; exact sub_lt ‹n > 0› ‹sqrt n * sqrt n > 0›) |
| 79 | + (assume : ¬ n - s*s < s, by simp [unpair, this]; exact sqrt_lt ‹n > 1›)) |
| 80 | + |
| 81 | +theorem unpair_lt : ∀ (n : nat), (unpair n).1 < succ n |
| 82 | +| 0 := dec_trivial |
| 83 | +| (succ n) := |
| 84 | + have (unpair (succ n)).1 < succ n, from unpair_lt_aux dec_trivial, |
| 85 | + lt.step this |
| 86 | + |
| 87 | +end nat |
0 commit comments