Skip to content

Commit

Permalink
feat(linear_algebra/linear_pmap): introduce notation (#15751)
Browse files Browse the repository at this point in the history
We add the notation `E →ₗ.[R] F` for `linear_pmap R E F` inspired by the notation for `pfun` and `linear_map`.

Co-authored-by: Anatole Dedecker <anatolededecker@gmail.com>
  • Loading branch information
mcdoll and ADedecker committed Aug 17, 2022
1 parent 4e76ad0 commit 22dce61
Show file tree
Hide file tree
Showing 3 changed files with 86 additions and 87 deletions.
8 changes: 4 additions & 4 deletions src/analysis/convex/cone.lean
Expand Up @@ -481,7 +481,7 @@ variables [add_comm_group E] [module ℝ E]

namespace riesz_extension
open submodule
variables (s : convex_cone ℝ E) (f : linear_pmap ℝ E ℝ)
variables (s : convex_cone ℝ E) (f : E →ₗ.[ℝ] ℝ)

/-- Induction step in M. Riesz extension theorem. Given a convex cone `s` in a vector space `E`,
a partially defined linear map `f : f.domain → ℝ`, assume that `f` is nonnegative on `f.domain ∩ p`
Expand Down Expand Up @@ -539,7 +539,7 @@ begin
mul_inv_cancel hr.ne', one_mul] at this } }
end

theorem exists_top (p : linear_pmap ℝ E ℝ)
theorem exists_top (p : E →ₗ.[ℝ] ℝ)
(hp_nonneg : ∀ x : p.domain, (x : E) ∈ s → 0 ≤ p x)
(hp_dense : ∀ y, ∃ x : p.domain, (x : E) + y ∈ s) :
∃ q ≥ p, q.domain = ⊤ ∧ ∀ x : q.domain, (x : E) ∈ s → 0 ≤ q x :=
Expand Down Expand Up @@ -570,7 +570,7 @@ end riesz_extension
and a linear `f : p → ℝ`, assume that `f` is nonnegative on `p ∩ s` and `p + s = E`. Then
there exists a globally defined linear function `g : E → ℝ` that agrees with `f` on `p`,
and is nonnegative on `s`. -/
theorem riesz_extension (s : convex_cone ℝ E) (f : linear_pmap ℝ E ℝ)
theorem riesz_extension (s : convex_cone ℝ E) (f : E →ₗ.[ℝ] ℝ)
(nonneg : ∀ x : f.domain, (x : E) ∈ s → 0 ≤ f x) (dense : ∀ y, ∃ x : f.domain, (x : E) + y ∈ s) :
∃ g : E →ₗ[ℝ] ℝ, (∀ x : f.domain, g x = f x) ∧ (∀ x ∈ s, 0 ≤ g x) :=
begin
Expand All @@ -586,7 +586,7 @@ end
defined on a subspace of `E`, and `f x ≤ N x` for all `x` in the domain of `f`,
then `f` can be extended to the whole space to a linear map `g` such that `g x ≤ N x`
for all `x`. -/
theorem exists_extension_of_le_sublinear (f : linear_pmap ℝ E ℝ) (N : E → ℝ)
theorem exists_extension_of_le_sublinear (f : E →ₗ.[ℝ] ℝ) (N : E → ℝ)
(N_hom : ∀ (c : ℝ), 0 < c → ∀ x, N (c • x) = c * N x)
(N_add : ∀ x y, N (x + y) ≤ N x + N y)
(hf : ∀ x : f.domain, f x ≤ N x) :
Expand Down
2 changes: 1 addition & 1 deletion src/analysis/normed_space/hahn_banach/separation.lean
Expand Up @@ -42,7 +42,7 @@ lemma separate_convex_open_set [seminormed_add_comm_group E] [normed_space ℝ E
(hs₀ : (0 : E) ∈ s) (hs₁ : convex ℝ s) (hs₂ : is_open s) {x₀ : E} (hx₀ : x₀ ∉ s) :
∃ f : E →L[ℝ] ℝ, f x₀ = 1 ∧ ∀ x ∈ s, f x < 1 :=
begin
let f : linear_pmap ℝ E ℝ :=
let f : E →ₗ.[ℝ] ℝ :=
linear_pmap.mk_span_singleton x₀ 1 (ne_of_mem_of_not_mem hs₀ hx₀).symm,
obtain ⟨r, hr, hrs⟩ := metric.mem_nhds_iff.1
(filter.inter_mem (hs₂.mem_nhds hs₀) $ hs₂.neg.mem_nhds $ by rwa [mem_neg, neg_zero]),
Expand Down

0 comments on commit 22dce61

Please sign in to comment.