Skip to content
This repository was archived by the owner on Jul 24, 2024. It is now read-only.

Commit 235dda3

Browse files
committed
refactor(data/list): rm redundant eq_nil_of_forall_not_mem
1 parent ffa6d69 commit 235dda3

File tree

3 files changed

+2
-6
lines changed

3 files changed

+2
-6
lines changed

src/data/hash_map.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -149,7 +149,7 @@ begin
149149
end
150150

151151
theorem mk_as_list (n : ℕ+) : bucket_array.as_list (mk_array n.1 [] : bucket_array α β n) = [] :=
152-
list.eq_nil_of_forall_not_mem $ λ x m,
152+
list.eq_nil_iff_forall_not_mem.mpr $ λ x m,
153153
let ⟨i, h⟩ := (bucket_array.mem_as_list _).1 m in h
154154

155155
theorem mk_valid (n : ℕ+) : @valid n (mk_array n.1 []) 0 :=

src/data/list/basic.lean

Lines changed: 0 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -44,10 +44,6 @@ assume l₁ l₂, assume Pe, tail_eq_of_cons_eq Pe
4444

4545
/- mem -/
4646

47-
theorem eq_nil_of_forall_not_mem : ∀ {l : list α}, (∀ a, a ∉ l) → l = nil
48-
| [] := assume h, rfl
49-
| (b :: l') := assume h, absurd (mem_cons_self b l') (h b)
50-
5147
theorem mem_singleton_self (a : α) : a ∈ [a] := mem_cons_self _ _
5248

5349
theorem eq_of_mem_singleton {a b : α} : a ∈ [b] → a = b :=

src/data/multiset.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -165,7 +165,7 @@ e.symm ▸ ⟨(l₁++l₂ : list α), quot.sound perm_middle⟩
165165
@[simp] theorem not_mem_zero (a : α) : a ∉ (0 : multiset α) := id
166166

167167
theorem eq_zero_of_forall_not_mem {s : multiset α} : (∀x, x ∉ s) → s = 0 :=
168-
quot.induction_on s $ λ l H, by rw eq_nil_of_forall_not_mem H; refl
168+
quot.induction_on s $ λ l H, by rw eq_nil_iff_forall_not_mem.mpr H; refl
169169

170170
theorem exists_mem_of_ne_zero {s : multiset α} : s ≠ 0 → ∃ a : α, a ∈ s :=
171171
quot.induction_on s $ assume l hl,

0 commit comments

Comments
 (0)