This repository was archived by the owner on Jul 24, 2024. It is now read-only.
File tree Expand file tree Collapse file tree 2 files changed +11
-1
lines changed Expand file tree Collapse file tree 2 files changed +11
-1
lines changed Original file line number Diff line number Diff line change @@ -1583,10 +1583,16 @@ begin
1583
1583
{ exact λ h, subsingleton.intro (λ a b, set_coe.ext (h a.property b.property)) }
1584
1584
end
1585
1585
1586
+ /-- The preimage of a subsingleton under an injective map is a subsingleton. -/
1587
+ theorem subsingleton.preimage {s : set β} (hs : s.subsingleton) {f : α → β}
1588
+ (hf : function.injective f) :
1589
+ (f ⁻¹' s).subsingleton :=
1590
+ λ a ha b hb, hf $ hs ha hb
1591
+
1586
1592
/-- `s` is a subsingleton, if its image of an injective function is. -/
1587
1593
theorem subsingleton_of_image {α β : Type *} {f : α → β} (hf : function.injective f)
1588
1594
(s : set α) (hs : (f '' s).subsingleton) : s.subsingleton :=
1589
- λ a ha b hb, hf $ hs (mem_image_of_mem _ ha) (mem_image_of_mem _ hb)
1595
+ (hs.preimage hf).mono $ subset_preimage_image _ _
1590
1596
1591
1597
theorem univ_eq_true_false : univ = ({true, false} : set Prop ) :=
1592
1598
eq.symm $ eq_univ_of_forall $ classical.cases (by simp) (by simp)
Original file line number Diff line number Diff line change @@ -951,6 +951,10 @@ begin
951
951
exact exists_swap
952
952
end
953
953
954
+ lemma image_bUnion {f : α → β} {s : ι → set α} {p : ι → Prop } :
955
+ f '' (⋃ i (hi : p i), s i) = (⋃ i (hi : p i), f '' s i) :=
956
+ by simp only [image_Union]
957
+
954
958
lemma univ_subtype {p : α → Prop } : (univ : set (subtype p)) = (⋃x (h : p x), {⟨x, h⟩}) :=
955
959
set.ext $ assume ⟨x, h⟩, by simp [h]
956
960
You can’t perform that action at this time.
0 commit comments