|
1 | 1 | /-
|
2 | 2 | Copyright (c) 2019 Reid Barton. All rights reserved.
|
3 | 3 | Released under Apache 2.0 license as described in the file LICENSE.
|
4 |
| -Authors: Reid Barton, Johan Commelin |
| 4 | +Authors: Reid Barton, Johan Commelin, Bhavik Mehta |
5 | 5 | -/
|
6 | 6 | import category_theory.equivalence
|
7 | 7 | import data.equiv.basic
|
@@ -204,16 +204,87 @@ def id : 𝟭 C ⊣ 𝟭 C :=
|
204 | 204 | unit := 𝟙 _,
|
205 | 205 | counit := 𝟙 _ }
|
206 | 206 |
|
| 207 | +/-- If F and G are naturally isomorphic functors, establish an equivalence of hom-sets. -/ |
| 208 | +def equiv_homset_left_of_nat_iso |
| 209 | + {F F' : C ⥤ D} (iso : F ≅ F') {X : C} {Y : D} : |
| 210 | + (F.obj X ⟶ Y) ≃ (F'.obj X ⟶ Y) := |
| 211 | +{ to_fun := λ f, iso.inv.app _ ≫ f, |
| 212 | + inv_fun := λ g, iso.hom.app _ ≫ g, |
| 213 | + left_inv := λ f, by simp, |
| 214 | + right_inv := λ g, by simp } |
| 215 | + |
| 216 | +@[simp] |
| 217 | +lemma equiv_homset_left_of_nat_iso_apply {F F' : C ⥤ D} (iso : F ≅ F') {X : C} {Y : D} (f : F.obj X ⟶ Y) : |
| 218 | + (equiv_homset_left_of_nat_iso iso) f = iso.inv.app _ ≫ f := rfl |
| 219 | + |
| 220 | +@[simp] |
| 221 | +lemma equiv_homset_left_of_nat_iso_symm_apply {F F' : C ⥤ D} (iso : F ≅ F') {X : C} {Y : D} (g : F'.obj X ⟶ Y) : |
| 222 | + (equiv_homset_left_of_nat_iso iso).symm g = iso.hom.app _ ≫ g := rfl |
| 223 | + |
| 224 | +/-- If G and H are naturally isomorphic functors, establish an equivalence of hom-sets. -/ |
| 225 | +def equiv_homset_right_of_nat_iso |
| 226 | + {G G' : D ⥤ C} (iso : G ≅ G') {X : C} {Y : D} : |
| 227 | + (X ⟶ G.obj Y) ≃ (X ⟶ G'.obj Y) := |
| 228 | +{ to_fun := λ f, f ≫ iso.hom.app _, |
| 229 | + inv_fun := λ g, g ≫ iso.inv.app _, |
| 230 | + left_inv := λ f, by simp, |
| 231 | + right_inv := λ g, by simp } |
| 232 | + |
| 233 | +@[simp] |
| 234 | +lemma equiv_homset_right_of_nat_iso_apply {G G' : D ⥤ C} (iso : G ≅ G') {X : C} {Y : D} (f : X ⟶ G.obj Y) : |
| 235 | + (equiv_homset_right_of_nat_iso iso) f = f ≫ iso.hom.app _ := rfl |
| 236 | + |
| 237 | +@[simp] |
| 238 | +lemma equiv_homset_right_of_nat_iso_symm_apply {G G' : D ⥤ C} (iso : G ≅ G') {X : C} {Y : D} (g : X ⟶ G'.obj Y) : |
| 239 | + (equiv_homset_right_of_nat_iso iso).symm g = g ≫ iso.inv.app _ := rfl |
| 240 | + |
| 241 | +/-- Transport an adjunction along an natural isomorphism on the left. -/ |
| 242 | +def of_nat_iso_left |
| 243 | + {F G : C ⥤ D} {H : D ⥤ C} (adj : F ⊣ H) (iso : F ≅ G) : |
| 244 | + G ⊣ H := |
| 245 | +adjunction.mk_of_hom_equiv |
| 246 | +{ hom_equiv := λ X Y, (equiv_homset_left_of_nat_iso iso.symm).trans (adj.hom_equiv X Y) } |
| 247 | + |
| 248 | +/-- Transport an adjunction along an natural isomorphism on the right. -/ |
| 249 | +def of_nat_iso_right |
| 250 | + {F : C ⥤ D} {G H : D ⥤ C} (adj : F ⊣ G) (iso : G ≅ H) : |
| 251 | + F ⊣ H := |
| 252 | +adjunction.mk_of_hom_equiv |
| 253 | +{ hom_equiv := λ X Y, (adj.hom_equiv X Y).trans (equiv_homset_right_of_nat_iso iso) } |
| 254 | + |
| 255 | +/-- Transport being a right adjoint along a natural isomorphism. -/ |
| 256 | +def right_adjoint_of_nat_iso {F G : C ⥤ D} (h : F ≅ G) [r : is_right_adjoint F] : is_right_adjoint G := |
| 257 | +{ left := r.left, |
| 258 | + adj := of_nat_iso_right r.adj h } |
| 259 | + |
| 260 | +/-- Transport being a left adjoint along a natural isomorphism. -/ |
| 261 | +def left_adjoint_of_nat_iso {F G : C ⥤ D} (h : F ≅ G) [r : is_left_adjoint F] : is_left_adjoint G := |
| 262 | +{ right := r.right, |
| 263 | + adj := of_nat_iso_left r.adj h } |
| 264 | + |
207 | 265 | section
|
208 | 266 | variables {E : Type u₃} [ℰ : category.{v₃} E] (H : D ⥤ E) (I : E ⥤ D)
|
209 | 267 |
|
| 268 | +/-- Show that adjunctions can be composed. -/ |
210 | 269 | def comp (adj₁ : F ⊣ G) (adj₂ : H ⊣ I) : F ⋙ H ⊣ I ⋙ G :=
|
211 | 270 | { hom_equiv := λ X Z, equiv.trans (adj₂.hom_equiv _ _) (adj₁.hom_equiv _ _),
|
212 | 271 | unit := adj₁.unit ≫
|
213 | 272 | (whisker_left F $ whisker_right adj₂.unit G) ≫ (functor.associator _ _ _).inv,
|
214 | 273 | counit := (functor.associator _ _ _).hom ≫
|
215 | 274 | (whisker_left I $ whisker_right adj₁.counit H) ≫ adj₂.counit }
|
216 | 275 |
|
| 276 | +/-- If `F` and `G` are left adjoints then `F ⋙ G` is a left adjoint too. -/ |
| 277 | +instance left_adjoint_of_comp {E : Type u₃} [ℰ : category.{v₃} E] (F : C ⥤ D) (G : D ⥤ E) |
| 278 | + [Fl : is_left_adjoint F] [Gl : is_left_adjoint G] : is_left_adjoint (F ⋙ G) := |
| 279 | +{ right := Gl.right ⋙ Fl.right, |
| 280 | + adj := comp _ _ Fl.adj Gl.adj } |
| 281 | + |
| 282 | +/-- If `F` and `G` are right adjoints then `F ⋙ G` is a right adjoint too. -/ |
| 283 | +instance right_adjoint_of_comp {E : Type u₃} [ℰ : category.{v₃} E] {F : C ⥤ D} {G : D ⥤ E} |
| 284 | + [Fr : is_right_adjoint F] [Gr : is_right_adjoint G] : is_right_adjoint (F ⋙ G) := |
| 285 | +{ left := Gr.left ⋙ Fr.left, |
| 286 | + adj := comp _ _ Gr.adj Fr.adj } |
| 287 | + |
217 | 288 | end
|
218 | 289 |
|
219 | 290 | section construct_left
|
@@ -297,9 +368,22 @@ end equivalence
|
297 | 368 |
|
298 | 369 | namespace functor
|
299 | 370 |
|
| 371 | +/-- An equivalence `E` is left adjoint to its inverse. -/ |
300 | 372 | def adjunction (E : C ⥤ D) [is_equivalence E] : E ⊣ E.inv :=
|
301 | 373 | (E.as_equivalence).to_adjunction
|
302 | 374 |
|
| 375 | +/-- If `F` is an equivalence, it's a left adjoint. -/ |
| 376 | +@[priority 10] |
| 377 | +instance left_adjoint_of_equivalence {F : C ⥤ D} [is_equivalence F] : is_left_adjoint F := |
| 378 | +{ right := _, |
| 379 | + adj := functor.adjunction F } |
| 380 | + |
| 381 | +/-- If `F` is an equivalence, it's a right adjoint. -/ |
| 382 | +@[priority 10] |
| 383 | +instance right_adjoint_of_equivalence {F : C ⥤ D} [is_equivalence F] : is_right_adjoint F := |
| 384 | +{ left := _, |
| 385 | + adj := functor.adjunction F.inv } |
| 386 | + |
303 | 387 | end functor
|
304 | 388 |
|
305 | 389 | end category_theory
|
0 commit comments