Skip to content

Commit

Permalink
chore(topology/algebra): remove dead code (#9467)
Browse files Browse the repository at this point in the history
This code wasn't used and its historically intended use will soon be redone much better. The second file is only a dead import and a misleading comment (referring to the dead code of the *other* file).
  • Loading branch information
PatrickMassot committed Oct 1, 2021
1 parent 5b02571 commit 2b23d2e
Show file tree
Hide file tree
Showing 2 changed files with 0 additions and 76 deletions.
72 changes: 0 additions & 72 deletions src/topology/algebra/group.lean
Expand Up @@ -465,78 +465,6 @@ class add_group_with_zero_nhd (G : Type u) extends add_comm_group G :=
(zero_Z : pure 0 ≤ Z)
(sub_Z : tendsto (λp:G×G, p.1 - p.2) (Z ×ᶠ Z) Z)

namespace add_group_with_zero_nhd
variables (G) [add_group_with_zero_nhd G]

local notation `Z` := add_group_with_zero_nhd.Z

@[priority 100] -- see Note [lower instance priority]
instance : topological_space G :=
topological_space.mk_of_nhds $ λa, map (λx, x + a) (Z G)

variables {G}

lemma neg_Z : tendsto (λa:G, - a) (Z G) (Z G) :=
have tendsto (λa, (0:G)) (Z G) (Z G),
by refine le_trans (assume h, _) zero_Z; simp [univ_mem'] {contextual := tt},
have tendsto (λa:G, 0 - a) (Z G) (Z G), from
sub_Z.comp (tendsto.prod_mk this tendsto_id),
by simpa

lemma add_Z : tendsto (λp:G×G, p.1 + p.2) (Z G ×ᶠ Z G) (Z G) :=
suffices tendsto (λp:G×G, p.1 - -p.2) (Z G ×ᶠ Z G) (Z G),
by simpa [sub_eq_add_neg],
sub_Z.comp (tendsto.prod_mk tendsto_fst (neg_Z.comp tendsto_snd))

lemma exists_Z_half {s : set G} (hs : s ∈ Z G) : ∃ V ∈ Z G, ∀ (v ∈ V) (w ∈ V), v + w ∈ s :=
begin
have : ((λa:G×G, a.1 + a.2) ⁻¹' s) ∈ Z G ×ᶠ Z G := add_Z (by simpa using hs),
rcases mem_prod_self_iff.1 this with ⟨V, H, H'⟩,
exact ⟨V, H, prod_subset_iff.1 H'⟩
end

lemma nhds_eq (a : G) : 𝓝 a = map (λx, x + a) (Z G) :=
topological_space.nhds_mk_of_nhds _ _
(assume a, calc pure a = map (λx, x + a) (pure 0) : by simp
... ≤ _ : map_mono zero_Z)
(assume b s hs,
let ⟨t, ht, eqt⟩ := exists_Z_half hs in
have t0 : (0:G) ∈ t, by simpa using zero_Z ht,
begin
refine ⟨(λx:G, x + b) '' t, image_mem_map ht, _, _⟩,
{ refine set.image_subset_iff.2 (assume b hbt, _),
simpa using eqt 0 t0 b hbt },
{ rintros _ ⟨c, hb, rfl⟩,
refine (Z G).sets_of_superset ht (assume x hxt, _),
simpa [add_assoc] using eqt _ hxt _ hb }
end)

lemma nhds_zero_eq_Z : 𝓝 0 = Z G := by simp [nhds_eq]; exact filter.map_id

@[priority 100] -- see Note [lower instance priority]
instance : has_continuous_add G :=
⟨ continuous_iff_continuous_at.2 $ assume ⟨a, b⟩,
begin
rw [continuous_at, nhds_prod_eq, nhds_eq, nhds_eq, nhds_eq, filter.prod_map_map_eq,
tendsto_map'_iff],
suffices : tendsto ((λx:G, (a + b) + x) ∘ (λp:G×G,p.1 + p.2)) (Z G ×ᶠ Z G)
(map (λx:G, (a + b) + x) (Z G)),
{ simpa [(∘), add_comm, add_left_comm] },
exact tendsto_map.comp add_Z
end

@[priority 100] -- see Note [lower instance priority]
instance : topological_add_group G :=
⟨continuous_iff_continuous_at.2 $ assume a,
begin
rw [continuous_at, nhds_eq, nhds_eq, tendsto_map'_iff],
suffices : tendsto ((λx:G, x - a) ∘ (λx:G, -x)) (Z G) (map (λx:G, x - a) (Z G)),
{ simpa [(∘), add_comm, sub_eq_add_neg] using this },
exact tendsto_map.comp neg_Z
end

end add_group_with_zero_nhd

section filter_mul

section
Expand Down
4 changes: 0 additions & 4 deletions src/topology/algebra/uniform_group.lean
Expand Up @@ -7,7 +7,6 @@ import topology.uniform_space.uniform_embedding
import topology.uniform_space.complete_separated
import topology.algebra.group
import tactic.abel
import deprecated.group

/-!
# Uniform structure on topological groups
Expand All @@ -16,9 +15,6 @@ import deprecated.group
construct a canonical uniformity for a topological add group.
* extension of ℤ-bilinear maps to complete groups (useful for ring completions)
* `add_group_with_zero_nhd`: construct the topological structure from a group with a neighbourhood
around zero. Then with `topological_add_group.to_uniform_space` one can derive a `uniform_space`.
-/

noncomputable theory
Expand Down

0 comments on commit 2b23d2e

Please sign in to comment.