Skip to content
This repository was archived by the owner on Jul 24, 2024. It is now read-only.

Commit 39014ec

Browse files
committed
feat(probability/independence): add indep_bot_left and indep_bot_right (#16309)
Prove that for any `m`, `indep m ⊥ μ`, and prove the corresponding statement with bot on the left. Also declare two types as variables on top of the file and remove them from many lemmas.
1 parent 5a3cd16 commit 39014ec

File tree

1 file changed

+48
-30
lines changed

1 file changed

+48
-30
lines changed

src/probability/independence.lean

Lines changed: 48 additions & 30 deletions
Original file line numberDiff line numberDiff line change
@@ -67,97 +67,115 @@ open_locale big_operators classical measure_theory
6767

6868
namespace probability_theory
6969

70+
variables {Ω ι : Type*}
71+
7072
section definitions
7173

7274
/-- A family of sets of sets `π : ι → set (set Ω)` is independent with respect to a measure `μ` if
7375
for any finite set of indices `s = {i_1, ..., i_n}`, for any sets
7476
`f i_1 ∈ π i_1, ..., f i_n ∈ π i_n`, then `μ (⋂ i in s, f i) = ∏ i in s, μ (f i) `.
7577
It will be used for families of pi_systems. -/
76-
def Indep_sets {Ω ι} [measurable_space Ω] (π : ι → set (set Ω)) (μ : measure Ω . volume_tac) :
78+
def Indep_sets [measurable_space Ω] (π : ι → set (set Ω)) (μ : measure Ω . volume_tac) :
7779
Prop :=
7880
∀ (s : finset ι) {f : ι → set Ω} (H : ∀ i, i ∈ s → f i ∈ π i), μ (⋂ i ∈ s, f i) = ∏ i in s, μ (f i)
7981

8082
/-- Two sets of sets `s₁, s₂` are independent with respect to a measure `μ` if for any sets
8183
`t₁ ∈ p₁, t₂ ∈ s₂`, then `μ (t₁ ∩ t₂) = μ (t₁) * μ (t₂)` -/
82-
def indep_sets {Ω} [measurable_space Ω] (s1 s2 : set (set Ω)) (μ : measure Ω . volume_tac) : Prop :=
84+
def indep_sets [measurable_space Ω] (s1 s2 : set (set Ω)) (μ : measure Ω . volume_tac) : Prop :=
8385
∀ t1 t2 : set Ω, t1 ∈ s1 → t2 ∈ s2 → μ (t1 ∩ t2) = μ t1 * μ t2
8486

8587
/-- A family of measurable space structures (i.e. of σ-algebras) is independent with respect to a
8688
measure `μ` (typically defined on a finer σ-algebra) if the family of sets of measurable sets they
8789
define is independent. `m : ι → measurable_space Ω` is independent with respect to measure `μ` if
8890
for any finite set of indices `s = {i_1, ..., i_n}`, for any sets
8991
`f i_1 ∈ m i_1, ..., f i_n ∈ m i_n`, then `μ (⋂ i in s, f i) = ∏ i in s, μ (f i) `. -/
90-
def Indep {Ω ι} (m : ι → measurable_space Ω) [measurable_space Ω] (μ : measure Ω . volume_tac) :
92+
def Indep (m : ι → measurable_space Ω) [measurable_space Ω] (μ : measure Ω . volume_tac) :
9193
Prop :=
9294
Indep_sets (λ x, {s | measurable_set[m x] s}) μ
9395

9496
/-- Two measurable space structures (or σ-algebras) `m₁, m₂` are independent with respect to a
9597
measure `μ` (defined on a third σ-algebra) if for any sets `t₁ ∈ m₁, t₂ ∈ m₂`,
9698
`μ (t₁ ∩ t₂) = μ (t₁) * μ (t₂)` -/
97-
def indep {Ω} (m₁ m₂ : measurable_space Ω) [measurable_space Ω] (μ : measure Ω . volume_tac) :
99+
def indep (m₁ m₂ : measurable_space Ω) [measurable_space Ω] (μ : measure Ω . volume_tac) :
98100
Prop :=
99101
indep_sets {s | measurable_set[m₁] s} {s | measurable_set[m₂] s} μ
100102

101103
/-- A family of sets is independent if the family of measurable space structures they generate is
102104
independent. For a set `s`, the generated measurable space has measurable sets `∅, s, sᶜ, univ`. -/
103-
def Indep_set {Ω ι} [measurable_space Ω] (s : ι → set Ω) (μ : measure Ω . volume_tac) : Prop :=
105+
def Indep_set [measurable_space Ω] (s : ι → set Ω) (μ : measure Ω . volume_tac) : Prop :=
104106
Indep (λ i, generate_from {s i}) μ
105107

106108
/-- Two sets are independent if the two measurable space structures they generate are independent.
107109
For a set `s`, the generated measurable space structure has measurable sets `∅, s, sᶜ, univ`. -/
108-
def indep_set {Ω} [measurable_space Ω] (s t : set Ω) (μ : measure Ω . volume_tac) : Prop :=
110+
def indep_set [measurable_space Ω] (s t : set Ω) (μ : measure Ω . volume_tac) : Prop :=
109111
indep (generate_from {s}) (generate_from {t}) μ
110112

111113
/-- A family of functions defined on the same space `Ω` and taking values in possibly different
112114
spaces, each with a measurable space structure, is independent if the family of measurable space
113115
structures they generate on `Ω` is independent. For a function `g` with codomain having measurable
114116
space structure `m`, the generated measurable space structure is `measurable_space.comap g m`. -/
115-
def Indep_fun {Ω ι} [measurable_space Ω] {β : ι → Type*} (m : Π (x : ι), measurable_space (β x))
117+
def Indep_fun [measurable_space Ω] {β : ι → Type*} (m : Π (x : ι), measurable_space (β x))
116118
(f : Π (x : ι), Ω → β x) (μ : measure Ω . volume_tac) : Prop :=
117119
Indep (λ x, measurable_space.comap (f x) (m x)) μ
118120

119121
/-- Two functions are independent if the two measurable space structures they generate are
120122
independent. For a function `f` with codomain having measurable space structure `m`, the generated
121123
measurable space structure is `measurable_space.comap f m`. -/
122-
def indep_fun {Ω β γ} [measurable_space Ω] [mβ : measurable_space β] [mγ : measurable_space γ]
124+
def indep_fun {β γ} [measurable_space Ω] [mβ : measurable_space β] [mγ : measurable_space γ]
123125
(f : Ω → β) (g : Ω → γ) (μ : measure Ω . volume_tac) : Prop :=
124126
indep (measurable_space.comap f mβ) (measurable_space.comap g mγ) μ
125127

126128
end definitions
127129

128130
section indep
129131

130-
lemma indep_sets.symm {Ω} {s₁ s₂ : set (set Ω)} [measurable_space Ω] {μ : measure Ω}
132+
lemma indep_sets.symm {s₁ s₂ : set (set Ω)} [measurable_space Ω] {μ : measure Ω}
131133
(h : indep_sets s₁ s₂ μ) :
132134
indep_sets s₂ s₁ μ :=
133135
by { intros t1 t2 ht1 ht2, rw [set.inter_comm, mul_comm], exact h t2 t1 ht2 ht1, }
134136

135-
lemma indep.symm {Ω} {m₁ m₂ : measurable_space Ω} [measurable_space Ω] {μ : measure Ω}
137+
lemma indep.symm {m₁ m₂ : measurable_space Ω} [measurable_space Ω] {μ : measure Ω}
136138
(h : indep m₁ m₂ μ) :
137139
indep m₂ m₁ μ :=
138140
indep_sets.symm h
139141

140-
lemma indep_sets_of_indep_sets_of_le_left {Ω} {s₁ s₂ s₃: set (set Ω)} [measurable_space Ω]
142+
lemma indep_bot_right (m' : measurable_space Ω) {m : measurable_space Ω}
143+
{μ : measure Ω} [is_probability_measure μ] :
144+
indep m' ⊥ μ :=
145+
begin
146+
intros s t hs ht,
147+
rw [set.mem_set_of_eq, measurable_space.measurable_set_bot_iff] at ht,
148+
cases ht,
149+
{ rw [ht, set.inter_empty, measure_empty, mul_zero], },
150+
{ rw [ht, set.inter_univ, measure_univ, mul_one], },
151+
end
152+
153+
lemma indep_bot_left (m' : measurable_space Ω) {m : measurable_space Ω}
154+
{μ : measure Ω} [is_probability_measure μ] :
155+
indep ⊥ m' μ :=
156+
(indep_bot_right m').symm
157+
158+
lemma indep_sets_of_indep_sets_of_le_left {s₁ s₂ s₃: set (set Ω)} [measurable_space Ω]
141159
{μ : measure Ω} (h_indep : indep_sets s₁ s₂ μ) (h31 : s₃ ⊆ s₁) :
142160
indep_sets s₃ s₂ μ :=
143161
λ t1 t2 ht1 ht2, h_indep t1 t2 (set.mem_of_subset_of_mem h31 ht1) ht2
144162

145-
lemma indep_sets_of_indep_sets_of_le_right {Ω} {s₁ s₂ s₃: set (set Ω)} [measurable_space Ω]
163+
lemma indep_sets_of_indep_sets_of_le_right {s₁ s₂ s₃: set (set Ω)} [measurable_space Ω]
146164
{μ : measure Ω} (h_indep : indep_sets s₁ s₂ μ) (h32 : s₃ ⊆ s₂) :
147165
indep_sets s₁ s₃ μ :=
148166
λ t1 t2 ht1 ht2, h_indep t1 t2 ht1 (set.mem_of_subset_of_mem h32 ht2)
149167

150-
lemma indep_of_indep_of_le_left {Ω} {m₁ m₂ m₃: measurable_space Ω} [measurable_space Ω]
168+
lemma indep_of_indep_of_le_left {m₁ m₂ m₃: measurable_space Ω} [measurable_space Ω]
151169
{μ : measure Ω} (h_indep : indep m₁ m₂ μ) (h31 : m₃ ≤ m₁) :
152170
indep m₃ m₂ μ :=
153171
λ t1 t2 ht1 ht2, h_indep t1 t2 (h31 _ ht1) ht2
154172

155-
lemma indep_of_indep_of_le_right {Ω} {m₁ m₂ m₃: measurable_space Ω} [measurable_space Ω]
173+
lemma indep_of_indep_of_le_right {m₁ m₂ m₃: measurable_space Ω} [measurable_space Ω]
156174
{μ : measure Ω} (h_indep : indep m₁ m₂ μ) (h32 : m₃ ≤ m₂) :
157175
indep m₁ m₃ μ :=
158176
λ t1 t2 ht1 ht2, h_indep t1 t2 ht1 (h32 _ ht2)
159177

160-
lemma indep_sets.union {Ω} [measurable_space Ω] {s₁ s₂ s' : set (set Ω)} {μ : measure Ω}
178+
lemma indep_sets.union [measurable_space Ω] {s₁ s₂ s' : set (set Ω)} {μ : measure Ω}
161179
(h₁ : indep_sets s₁ s' μ) (h₂ : indep_sets s₂ s' μ) :
162180
indep_sets (s₁ ∪ s₂) s' μ :=
163181
begin
@@ -167,14 +185,14 @@ begin
167185
{ exact h₂ t1 t2 ht1₂ ht2, },
168186
end
169187

170-
@[simp] lemma indep_sets.union_iff {Ω} [measurable_space Ω] {s₁ s₂ s' : set (set Ω)}
188+
@[simp] lemma indep_sets.union_iff [measurable_space Ω] {s₁ s₂ s' : set (set Ω)}
171189
{μ : measure Ω} :
172190
indep_sets (s₁ ∪ s₂) s' μ ↔ indep_sets s₁ s' μ ∧ indep_sets s₂ s' μ :=
173191
⟨λ h, ⟨indep_sets_of_indep_sets_of_le_left h (set.subset_union_left s₁ s₂),
174192
indep_sets_of_indep_sets_of_le_left h (set.subset_union_right s₁ s₂)⟩,
175193
λ h, indep_sets.union h.left h.right⟩
176194

177-
lemma indep_sets.Union {Ω ι} [measurable_space Ω] {s : ι → set (set Ω)} {s' : set (set Ω)}
195+
lemma indep_sets.Union [measurable_space Ω] {s : ι → set (set Ω)} {s' : set (set Ω)}
178196
{μ : measure Ω} (hyp : ∀ n, indep_sets (s n) s' μ) :
179197
indep_sets (⋃ n, s n) s' μ :=
180198
begin
@@ -184,17 +202,17 @@ begin
184202
exact hyp n t1 t2 ht1 ht2,
185203
end
186204

187-
lemma indep_sets.inter {Ω} [measurable_space Ω] {s₁ s' : set (set Ω)} (s₂ : set (set Ω))
205+
lemma indep_sets.inter [measurable_space Ω] {s₁ s' : set (set Ω)} (s₂ : set (set Ω))
188206
{μ : measure Ω} (h₁ : indep_sets s₁ s' μ) :
189207
indep_sets (s₁ ∩ s₂) s' μ :=
190208
λ t1 t2 ht1 ht2, h₁ t1 t2 ((set.mem_inter_iff _ _ _).mp ht1).left ht2
191209

192-
lemma indep_sets.Inter {Ω ι} [measurable_space Ω] {s : ι → set (set Ω)} {s' : set (set Ω)}
210+
lemma indep_sets.Inter [measurable_space Ω] {s : ι → set (set Ω)} {s' : set (set Ω)}
193211
{μ : measure Ω} (h : ∃ n, indep_sets (s n) s' μ) :
194212
indep_sets (⋂ n, s n) s' μ :=
195213
by {intros t1 t2 ht1 ht2, cases h with n h, exact h t1 t2 (set.mem_Inter.mp ht1 n) ht2 }
196214

197-
lemma indep_sets_singleton_iff {Ω} [measurable_space Ω] {s t : set Ω} {μ : measure Ω} :
215+
lemma indep_sets_singleton_iff [measurable_space Ω] {s t : set Ω} {μ : measure Ω} :
198216
indep_sets {s} {t} μ ↔ μ (s ∩ t) = μ s * μ t :=
199217
⟨λ h, h s t rfl rfl,
200218
λ h s1 t1 hs1 ht1, by rwa [set.mem_singleton_iff.mp hs1, set.mem_singleton_iff.mp ht1]⟩
@@ -204,7 +222,7 @@ end indep
204222
/-! ### Deducing `indep` from `Indep` -/
205223
section from_Indep_to_indep
206224

207-
lemma Indep_sets.indep_sets {Ω ι} {s : ι → set (set Ω)} [measurable_space Ω] {μ : measure Ω}
225+
lemma Indep_sets.indep_sets {s : ι → set (set Ω)} [measurable_space Ω] {μ : measure Ω}
208226
(h_indep : Indep_sets s μ) {i j : ι} (hij : i ≠ j) :
209227
indep_sets (s i) (s j) μ :=
210228
begin
@@ -229,15 +247,15 @@ begin
229247
rw [←h_inter, ←h_prod, h_indep {i, j} hf_m],
230248
end
231249

232-
lemma Indep.indep {Ω ι} {m : ι → measurable_space Ω} [measurable_space Ω] {μ : measure Ω}
250+
lemma Indep.indep {m : ι → measurable_space Ω} [measurable_space Ω] {μ : measure Ω}
233251
(h_indep : Indep m μ) {i j : ι} (hij : i ≠ j) :
234252
indep (m i) (m j) μ :=
235253
begin
236254
change indep_sets ((λ x, measurable_set[m x]) i) ((λ x, measurable_set[m x]) j) μ,
237255
exact Indep_sets.indep_sets h_indep hij,
238256
end
239257

240-
lemma Indep_fun.indep_fun {Ω ι : Type*} {m₀ : measurable_space Ω} {μ : measure Ω} {β : ι → Type*}
258+
lemma Indep_fun.indep_fun {m₀ : measurable_space Ω} {μ : measure Ω} {β : ι → Type*}
241259
{m : Π x, measurable_space (β x)} {f : Π i, Ω → β i} (hf_Indep : Indep_fun m f μ)
242260
{i j : ι} (hij : i ≠ j) :
243261
indep_fun (f i) (f j) μ :=
@@ -254,14 +272,14 @@ Independence of measurable spaces is equivalent to independence of generating π
254272
section from_measurable_spaces_to_sets_of_sets
255273
/-! ### Independence of measurable space structures implies independence of generating π-systems -/
256274

257-
lemma Indep.Indep_sets {Ω ι} [measurable_space Ω] {μ : measure Ω} {m : ι → measurable_space Ω}
275+
lemma Indep.Indep_sets [measurable_space Ω] {μ : measure Ω} {m : ι → measurable_space Ω}
258276
{s : ι → set (set Ω)} (hms : ∀ n, m n = generate_from (s n))
259277
(h_indep : Indep m μ) :
260278
Indep_sets s μ :=
261279
λ S f hfs, h_indep S $ λ x hxS,
262280
((hms x).symm ▸ measurable_set_generate_from (hfs x hxS) : measurable_set[m x] (f x))
263281

264-
lemma indep.indep_sets {Ω} [measurable_space Ω] {μ : measure Ω} {s1 s2 : set (set Ω)}
282+
lemma indep.indep_sets [measurable_space Ω] {μ : measure Ω} {s1 s2 : set (set Ω)}
265283
(h_indep : indep (generate_from s1) (generate_from s2) μ) :
266284
indep_sets s1 s2 μ :=
267285
λ t1 t2 ht1 ht2, h_indep t1 t2 (measurable_set_generate_from ht1) (measurable_set_generate_from ht2)
@@ -271,7 +289,7 @@ end from_measurable_spaces_to_sets_of_sets
271289
section from_pi_systems_to_measurable_spaces
272290
/-! ### Independence of generating π-systems implies independence of measurable space structures -/
273291

274-
private lemma indep_sets.indep_aux {Ω} {m2 : measurable_space Ω}
292+
private lemma indep_sets.indep_aux {m2 : measurable_space Ω}
275293
{m : measurable_space Ω} {μ : measure Ω} [is_probability_measure μ] {p1 p2 : set (set Ω)}
276294
(h2 : m2 ≤ m) (hp2 : is_pi_system p2) (hpm2 : m2 = generate_from p2)
277295
(hyp : indep_sets p1 p2 μ) {t1 t2 : set Ω} (ht1 : t1 ∈ p1) (ht2m : measurable_set[m2] t2) :
@@ -292,7 +310,7 @@ begin
292310
exact hyp t1 t ht1 ht,
293311
end
294312

295-
lemma indep_sets.indep {Ω} {m1 m2 : measurable_space Ω} {m : measurable_space Ω}
313+
lemma indep_sets.indep {m1 m2 : measurable_space Ω} {m : measurable_space Ω}
296314
{μ : measure Ω} [is_probability_measure μ] {p1 p2 : set (set Ω)} (h1 : m1 ≤ m) (h2 : m2 ≤ m)
297315
(hp1 : is_pi_system p1) (hp2 : is_pi_system p2) (hpm1 : m1 = generate_from p1)
298316
(hpm2 : m2 = generate_from p2) (hyp : indep_sets p1 p2 μ) :
@@ -314,7 +332,7 @@ begin
314332
exact indep_sets.indep_aux h2 hp2 hpm2 hyp ht ht2,
315333
end
316334

317-
variables {Ω ι : Type*} {m0 : measurable_space Ω} {μ : measure Ω}
335+
variables {m0 : measurable_space Ω} {μ : measure Ω}
318336

319337
lemma Indep_sets.pi_Union_Inter_singleton {π : ι → set (set Ω)} {a : ι} {S : finset ι}
320338
(hp_ind : Indep_sets π μ) (haS : a ∉ S) :
@@ -437,7 +455,7 @@ We prove the following equivalences on `indep_set`, for measurable sets `s, t`.
437455
* `indep_set s t μ ↔ indep_sets {s} {t} μ`.
438456
-/
439457

440-
variables {Ω : Type*} [measurable_space Ω] {s t : set Ω} (S T : set (set Ω))
458+
variables [measurable_space Ω] {s t : set Ω} (S T : set (set Ω))
441459

442460
lemma indep_set_iff_indep_sets_singleton (hs_meas : measurable_set s) (ht_meas : measurable_set t)
443461
(μ : measure Ω . volume_tac) [is_probability_measure μ] :
@@ -466,7 +484,7 @@ section indep_fun
466484
467485
-/
468486

469-
variables {Ω β β' γ γ' : Type*} {mΩ : measurable_space Ω} {μ : measure Ω} {f : Ω → β} {g : Ω → β'}
487+
variables {β β' γ γ' : Type*} {mΩ : measurable_space Ω} {μ : measure Ω} {f : Ω → β} {g : Ω → β'}
470488

471489
lemma indep_fun_iff_measure_inter_preimage_eq_mul
472490
{mβ : measurable_space β} {mβ' : measurable_space β'} :

0 commit comments

Comments
 (0)