@@ -67,97 +67,115 @@ open_locale big_operators classical measure_theory
67
67
68
68
namespace probability_theory
69
69
70
+ variables {Ω ι : Type *}
71
+
70
72
section definitions
71
73
72
74
/-- A family of sets of sets `π : ι → set (set Ω)` is independent with respect to a measure `μ` if
73
75
for any finite set of indices `s = {i_1, ..., i_n}`, for any sets
74
76
`f i_1 ∈ π i_1, ..., f i_n ∈ π i_n`, then `μ (⋂ i in s, f i) = ∏ i in s, μ (f i) `.
75
77
It will be used for families of pi_systems. -/
76
- def Indep_sets {Ω ι} [measurable_space Ω] (π : ι → set (set Ω)) (μ : measure Ω . volume_tac) :
78
+ def Indep_sets [measurable_space Ω] (π : ι → set (set Ω)) (μ : measure Ω . volume_tac) :
77
79
Prop :=
78
80
∀ (s : finset ι) {f : ι → set Ω} (H : ∀ i, i ∈ s → f i ∈ π i), μ (⋂ i ∈ s, f i) = ∏ i in s, μ (f i)
79
81
80
82
/-- Two sets of sets `s₁, s₂` are independent with respect to a measure `μ` if for any sets
81
83
`t₁ ∈ p₁, t₂ ∈ s₂`, then `μ (t₁ ∩ t₂) = μ (t₁) * μ (t₂)` -/
82
- def indep_sets {Ω} [measurable_space Ω] (s1 s2 : set (set Ω)) (μ : measure Ω . volume_tac) : Prop :=
84
+ def indep_sets [measurable_space Ω] (s1 s2 : set (set Ω)) (μ : measure Ω . volume_tac) : Prop :=
83
85
∀ t1 t2 : set Ω, t1 ∈ s1 → t2 ∈ s2 → μ (t1 ∩ t2) = μ t1 * μ t2
84
86
85
87
/-- A family of measurable space structures (i.e. of σ-algebras) is independent with respect to a
86
88
measure `μ` (typically defined on a finer σ-algebra) if the family of sets of measurable sets they
87
89
define is independent. `m : ι → measurable_space Ω` is independent with respect to measure `μ` if
88
90
for any finite set of indices `s = {i_1, ..., i_n}`, for any sets
89
91
`f i_1 ∈ m i_1, ..., f i_n ∈ m i_n`, then `μ (⋂ i in s, f i) = ∏ i in s, μ (f i) `. -/
90
- def Indep {Ω ι} (m : ι → measurable_space Ω) [measurable_space Ω] (μ : measure Ω . volume_tac) :
92
+ def Indep (m : ι → measurable_space Ω) [measurable_space Ω] (μ : measure Ω . volume_tac) :
91
93
Prop :=
92
94
Indep_sets (λ x, {s | measurable_set[m x] s}) μ
93
95
94
96
/-- Two measurable space structures (or σ-algebras) `m₁, m₂` are independent with respect to a
95
97
measure `μ` (defined on a third σ-algebra) if for any sets `t₁ ∈ m₁, t₂ ∈ m₂`,
96
98
`μ (t₁ ∩ t₂) = μ (t₁) * μ (t₂)` -/
97
- def indep {Ω} (m₁ m₂ : measurable_space Ω) [measurable_space Ω] (μ : measure Ω . volume_tac) :
99
+ def indep (m₁ m₂ : measurable_space Ω) [measurable_space Ω] (μ : measure Ω . volume_tac) :
98
100
Prop :=
99
101
indep_sets {s | measurable_set[m₁] s} {s | measurable_set[m₂] s} μ
100
102
101
103
/-- A family of sets is independent if the family of measurable space structures they generate is
102
104
independent. For a set `s`, the generated measurable space has measurable sets `∅, s, sᶜ, univ`. -/
103
- def Indep_set {Ω ι} [measurable_space Ω] (s : ι → set Ω) (μ : measure Ω . volume_tac) : Prop :=
105
+ def Indep_set [measurable_space Ω] (s : ι → set Ω) (μ : measure Ω . volume_tac) : Prop :=
104
106
Indep (λ i, generate_from {s i}) μ
105
107
106
108
/-- Two sets are independent if the two measurable space structures they generate are independent.
107
109
For a set `s`, the generated measurable space structure has measurable sets `∅, s, sᶜ, univ`. -/
108
- def indep_set {Ω} [measurable_space Ω] (s t : set Ω) (μ : measure Ω . volume_tac) : Prop :=
110
+ def indep_set [measurable_space Ω] (s t : set Ω) (μ : measure Ω . volume_tac) : Prop :=
109
111
indep (generate_from {s}) (generate_from {t}) μ
110
112
111
113
/-- A family of functions defined on the same space `Ω` and taking values in possibly different
112
114
spaces, each with a measurable space structure, is independent if the family of measurable space
113
115
structures they generate on `Ω` is independent. For a function `g` with codomain having measurable
114
116
space structure `m`, the generated measurable space structure is `measurable_space.comap g m`. -/
115
- def Indep_fun {Ω ι} [measurable_space Ω] {β : ι → Type *} (m : Π (x : ι), measurable_space (β x))
117
+ def Indep_fun [measurable_space Ω] {β : ι → Type *} (m : Π (x : ι), measurable_space (β x))
116
118
(f : Π (x : ι), Ω → β x) (μ : measure Ω . volume_tac) : Prop :=
117
119
Indep (λ x, measurable_space.comap (f x) (m x)) μ
118
120
119
121
/-- Two functions are independent if the two measurable space structures they generate are
120
122
independent. For a function `f` with codomain having measurable space structure `m`, the generated
121
123
measurable space structure is `measurable_space.comap f m`. -/
122
- def indep_fun {Ω β γ} [measurable_space Ω] [mβ : measurable_space β] [mγ : measurable_space γ]
124
+ def indep_fun {β γ} [measurable_space Ω] [mβ : measurable_space β] [mγ : measurable_space γ]
123
125
(f : Ω → β) (g : Ω → γ) (μ : measure Ω . volume_tac) : Prop :=
124
126
indep (measurable_space.comap f mβ) (measurable_space.comap g mγ) μ
125
127
126
128
end definitions
127
129
128
130
section indep
129
131
130
- lemma indep_sets.symm {Ω} { s₁ s₂ : set (set Ω)} [measurable_space Ω] {μ : measure Ω}
132
+ lemma indep_sets.symm {s₁ s₂ : set (set Ω)} [measurable_space Ω] {μ : measure Ω}
131
133
(h : indep_sets s₁ s₂ μ) :
132
134
indep_sets s₂ s₁ μ :=
133
135
by { intros t1 t2 ht1 ht2, rw [set.inter_comm, mul_comm], exact h t2 t1 ht2 ht1, }
134
136
135
- lemma indep.symm {Ω} { m₁ m₂ : measurable_space Ω} [measurable_space Ω] {μ : measure Ω}
137
+ lemma indep.symm {m₁ m₂ : measurable_space Ω} [measurable_space Ω] {μ : measure Ω}
136
138
(h : indep m₁ m₂ μ) :
137
139
indep m₂ m₁ μ :=
138
140
indep_sets.symm h
139
141
140
- lemma indep_sets_of_indep_sets_of_le_left {Ω} {s₁ s₂ s₃: set (set Ω)} [measurable_space Ω]
142
+ lemma indep_bot_right (m' : measurable_space Ω) {m : measurable_space Ω}
143
+ {μ : measure Ω} [is_probability_measure μ] :
144
+ indep m' ⊥ μ :=
145
+ begin
146
+ intros s t hs ht,
147
+ rw [set.mem_set_of_eq, measurable_space.measurable_set_bot_iff] at ht,
148
+ cases ht,
149
+ { rw [ht, set.inter_empty, measure_empty, mul_zero], },
150
+ { rw [ht, set.inter_univ, measure_univ, mul_one], },
151
+ end
152
+
153
+ lemma indep_bot_left (m' : measurable_space Ω) {m : measurable_space Ω}
154
+ {μ : measure Ω} [is_probability_measure μ] :
155
+ indep ⊥ m' μ :=
156
+ (indep_bot_right m').symm
157
+
158
+ lemma indep_sets_of_indep_sets_of_le_left {s₁ s₂ s₃: set (set Ω)} [measurable_space Ω]
141
159
{μ : measure Ω} (h_indep : indep_sets s₁ s₂ μ) (h31 : s₃ ⊆ s₁) :
142
160
indep_sets s₃ s₂ μ :=
143
161
λ t1 t2 ht1 ht2, h_indep t1 t2 (set.mem_of_subset_of_mem h31 ht1) ht2
144
162
145
- lemma indep_sets_of_indep_sets_of_le_right {Ω} { s₁ s₂ s₃: set (set Ω)} [measurable_space Ω]
163
+ lemma indep_sets_of_indep_sets_of_le_right {s₁ s₂ s₃: set (set Ω)} [measurable_space Ω]
146
164
{μ : measure Ω} (h_indep : indep_sets s₁ s₂ μ) (h32 : s₃ ⊆ s₂) :
147
165
indep_sets s₁ s₃ μ :=
148
166
λ t1 t2 ht1 ht2, h_indep t1 t2 ht1 (set.mem_of_subset_of_mem h32 ht2)
149
167
150
- lemma indep_of_indep_of_le_left {Ω} { m₁ m₂ m₃: measurable_space Ω} [measurable_space Ω]
168
+ lemma indep_of_indep_of_le_left {m₁ m₂ m₃: measurable_space Ω} [measurable_space Ω]
151
169
{μ : measure Ω} (h_indep : indep m₁ m₂ μ) (h31 : m₃ ≤ m₁) :
152
170
indep m₃ m₂ μ :=
153
171
λ t1 t2 ht1 ht2, h_indep t1 t2 (h31 _ ht1) ht2
154
172
155
- lemma indep_of_indep_of_le_right {Ω} { m₁ m₂ m₃: measurable_space Ω} [measurable_space Ω]
173
+ lemma indep_of_indep_of_le_right {m₁ m₂ m₃: measurable_space Ω} [measurable_space Ω]
156
174
{μ : measure Ω} (h_indep : indep m₁ m₂ μ) (h32 : m₃ ≤ m₂) :
157
175
indep m₁ m₃ μ :=
158
176
λ t1 t2 ht1 ht2, h_indep t1 t2 ht1 (h32 _ ht2)
159
177
160
- lemma indep_sets.union {Ω} [measurable_space Ω] {s₁ s₂ s' : set (set Ω)} {μ : measure Ω}
178
+ lemma indep_sets.union [measurable_space Ω] {s₁ s₂ s' : set (set Ω)} {μ : measure Ω}
161
179
(h₁ : indep_sets s₁ s' μ) (h₂ : indep_sets s₂ s' μ) :
162
180
indep_sets (s₁ ∪ s₂) s' μ :=
163
181
begin
@@ -167,14 +185,14 @@ begin
167
185
{ exact h₂ t1 t2 ht1₂ ht2, },
168
186
end
169
187
170
- @[simp] lemma indep_sets.union_iff {Ω} [measurable_space Ω] {s₁ s₂ s' : set (set Ω)}
188
+ @[simp] lemma indep_sets.union_iff [measurable_space Ω] {s₁ s₂ s' : set (set Ω)}
171
189
{μ : measure Ω} :
172
190
indep_sets (s₁ ∪ s₂) s' μ ↔ indep_sets s₁ s' μ ∧ indep_sets s₂ s' μ :=
173
191
⟨λ h, ⟨indep_sets_of_indep_sets_of_le_left h (set.subset_union_left s₁ s₂),
174
192
indep_sets_of_indep_sets_of_le_left h (set.subset_union_right s₁ s₂)⟩,
175
193
λ h, indep_sets.union h.left h.right⟩
176
194
177
- lemma indep_sets.Union {Ω ι} [measurable_space Ω] {s : ι → set (set Ω)} {s' : set (set Ω)}
195
+ lemma indep_sets.Union [measurable_space Ω] {s : ι → set (set Ω)} {s' : set (set Ω)}
178
196
{μ : measure Ω} (hyp : ∀ n, indep_sets (s n) s' μ) :
179
197
indep_sets (⋃ n, s n) s' μ :=
180
198
begin
@@ -184,17 +202,17 @@ begin
184
202
exact hyp n t1 t2 ht1 ht2,
185
203
end
186
204
187
- lemma indep_sets.inter {Ω} [measurable_space Ω] {s₁ s' : set (set Ω)} (s₂ : set (set Ω))
205
+ lemma indep_sets.inter [measurable_space Ω] {s₁ s' : set (set Ω)} (s₂ : set (set Ω))
188
206
{μ : measure Ω} (h₁ : indep_sets s₁ s' μ) :
189
207
indep_sets (s₁ ∩ s₂) s' μ :=
190
208
λ t1 t2 ht1 ht2, h₁ t1 t2 ((set.mem_inter_iff _ _ _).mp ht1).left ht2
191
209
192
- lemma indep_sets.Inter {Ω ι} [measurable_space Ω] {s : ι → set (set Ω)} {s' : set (set Ω)}
210
+ lemma indep_sets.Inter [measurable_space Ω] {s : ι → set (set Ω)} {s' : set (set Ω)}
193
211
{μ : measure Ω} (h : ∃ n, indep_sets (s n) s' μ) :
194
212
indep_sets (⋂ n, s n) s' μ :=
195
213
by {intros t1 t2 ht1 ht2, cases h with n h, exact h t1 t2 (set.mem_Inter.mp ht1 n) ht2 }
196
214
197
- lemma indep_sets_singleton_iff {Ω} [measurable_space Ω] {s t : set Ω} {μ : measure Ω} :
215
+ lemma indep_sets_singleton_iff [measurable_space Ω] {s t : set Ω} {μ : measure Ω} :
198
216
indep_sets {s} {t} μ ↔ μ (s ∩ t) = μ s * μ t :=
199
217
⟨λ h, h s t rfl rfl,
200
218
λ h s1 t1 hs1 ht1, by rwa [set.mem_singleton_iff.mp hs1, set.mem_singleton_iff.mp ht1]⟩
@@ -204,7 +222,7 @@ end indep
204
222
/-! ### Deducing `indep` from `Indep` -/
205
223
section from_Indep_to_indep
206
224
207
- lemma Indep_sets.indep_sets {Ω ι} { s : ι → set (set Ω)} [measurable_space Ω] {μ : measure Ω}
225
+ lemma Indep_sets.indep_sets {s : ι → set (set Ω)} [measurable_space Ω] {μ : measure Ω}
208
226
(h_indep : Indep_sets s μ) {i j : ι} (hij : i ≠ j) :
209
227
indep_sets (s i) (s j) μ :=
210
228
begin
@@ -229,15 +247,15 @@ begin
229
247
rw [←h_inter, ←h_prod, h_indep {i, j} hf_m],
230
248
end
231
249
232
- lemma Indep.indep {Ω ι} { m : ι → measurable_space Ω} [measurable_space Ω] {μ : measure Ω}
250
+ lemma Indep.indep {m : ι → measurable_space Ω} [measurable_space Ω] {μ : measure Ω}
233
251
(h_indep : Indep m μ) {i j : ι} (hij : i ≠ j) :
234
252
indep (m i) (m j) μ :=
235
253
begin
236
254
change indep_sets ((λ x, measurable_set[m x]) i) ((λ x, measurable_set[m x]) j) μ,
237
255
exact Indep_sets.indep_sets h_indep hij,
238
256
end
239
257
240
- lemma Indep_fun.indep_fun {Ω ι : Type *} { m₀ : measurable_space Ω} {μ : measure Ω} {β : ι → Type *}
258
+ lemma Indep_fun.indep_fun {m₀ : measurable_space Ω} {μ : measure Ω} {β : ι → Type *}
241
259
{m : Π x, measurable_space (β x)} {f : Π i, Ω → β i} (hf_Indep : Indep_fun m f μ)
242
260
{i j : ι} (hij : i ≠ j) :
243
261
indep_fun (f i) (f j) μ :=
@@ -254,14 +272,14 @@ Independence of measurable spaces is equivalent to independence of generating π
254
272
section from_measurable_spaces_to_sets_of_sets
255
273
/-! ### Independence of measurable space structures implies independence of generating π-systems -/
256
274
257
- lemma Indep.Indep_sets {Ω ι} [measurable_space Ω] {μ : measure Ω} {m : ι → measurable_space Ω}
275
+ lemma Indep.Indep_sets [measurable_space Ω] {μ : measure Ω} {m : ι → measurable_space Ω}
258
276
{s : ι → set (set Ω)} (hms : ∀ n, m n = generate_from (s n))
259
277
(h_indep : Indep m μ) :
260
278
Indep_sets s μ :=
261
279
λ S f hfs, h_indep S $ λ x hxS,
262
280
((hms x).symm ▸ measurable_set_generate_from (hfs x hxS) : measurable_set[m x] (f x))
263
281
264
- lemma indep.indep_sets {Ω} [measurable_space Ω] {μ : measure Ω} {s1 s2 : set (set Ω)}
282
+ lemma indep.indep_sets [measurable_space Ω] {μ : measure Ω} {s1 s2 : set (set Ω)}
265
283
(h_indep : indep (generate_from s1) (generate_from s2) μ) :
266
284
indep_sets s1 s2 μ :=
267
285
λ t1 t2 ht1 ht2, h_indep t1 t2 (measurable_set_generate_from ht1) (measurable_set_generate_from ht2)
@@ -271,7 +289,7 @@ end from_measurable_spaces_to_sets_of_sets
271
289
section from_pi_systems_to_measurable_spaces
272
290
/-! ### Independence of generating π-systems implies independence of measurable space structures -/
273
291
274
- private lemma indep_sets.indep_aux {Ω} { m2 : measurable_space Ω}
292
+ private lemma indep_sets.indep_aux {m2 : measurable_space Ω}
275
293
{m : measurable_space Ω} {μ : measure Ω} [is_probability_measure μ] {p1 p2 : set (set Ω)}
276
294
(h2 : m2 ≤ m) (hp2 : is_pi_system p2) (hpm2 : m2 = generate_from p2)
277
295
(hyp : indep_sets p1 p2 μ) {t1 t2 : set Ω} (ht1 : t1 ∈ p1) (ht2m : measurable_set[m2] t2) :
@@ -292,7 +310,7 @@ begin
292
310
exact hyp t1 t ht1 ht,
293
311
end
294
312
295
- lemma indep_sets.indep {Ω} { m1 m2 : measurable_space Ω} {m : measurable_space Ω}
313
+ lemma indep_sets.indep {m1 m2 : measurable_space Ω} {m : measurable_space Ω}
296
314
{μ : measure Ω} [is_probability_measure μ] {p1 p2 : set (set Ω)} (h1 : m1 ≤ m) (h2 : m2 ≤ m)
297
315
(hp1 : is_pi_system p1) (hp2 : is_pi_system p2) (hpm1 : m1 = generate_from p1)
298
316
(hpm2 : m2 = generate_from p2) (hyp : indep_sets p1 p2 μ) :
@@ -314,7 +332,7 @@ begin
314
332
exact indep_sets.indep_aux h2 hp2 hpm2 hyp ht ht2,
315
333
end
316
334
317
- variables {Ω ι : Type *} { m0 : measurable_space Ω} {μ : measure Ω}
335
+ variables {m0 : measurable_space Ω} {μ : measure Ω}
318
336
319
337
lemma Indep_sets.pi_Union_Inter_singleton {π : ι → set (set Ω)} {a : ι} {S : finset ι}
320
338
(hp_ind : Indep_sets π μ) (haS : a ∉ S) :
@@ -437,7 +455,7 @@ We prove the following equivalences on `indep_set`, for measurable sets `s, t`.
437
455
* `indep_set s t μ ↔ indep_sets {s} {t} μ`.
438
456
-/
439
457
440
- variables {Ω : Type *} [measurable_space Ω] {s t : set Ω} (S T : set (set Ω))
458
+ variables [measurable_space Ω] {s t : set Ω} (S T : set (set Ω))
441
459
442
460
lemma indep_set_iff_indep_sets_singleton (hs_meas : measurable_set s) (ht_meas : measurable_set t)
443
461
(μ : measure Ω . volume_tac) [is_probability_measure μ] :
@@ -466,7 +484,7 @@ section indep_fun
466
484
467
485
-/
468
486
469
- variables {Ω β β' γ γ' : Type *} {mΩ : measurable_space Ω} {μ : measure Ω} {f : Ω → β} {g : Ω → β'}
487
+ variables {β β' γ γ' : Type *} {mΩ : measurable_space Ω} {μ : measure Ω} {f : Ω → β} {g : Ω → β'}
470
488
471
489
lemma indep_fun_iff_measure_inter_preimage_eq_mul
472
490
{mβ : measurable_space β} {mβ' : measurable_space β'} :
0 commit comments