@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
4
4
Authors: Thomas Browning
5
5
-/
6
6
7
- import group_theory.coset
7
+ import group_theory.quotient_group
8
8
import set_theory.cardinal
9
9
10
10
/-!
@@ -31,13 +31,15 @@ In this file we define the index of a subgroup, and prove several divisibility p
31
31
32
32
namespace subgroup
33
33
34
+ open_locale cardinal
35
+
34
36
variables {G : Type *} [group G] (H K L : subgroup G)
35
37
36
38
/-- The index of a subgroup as a natural number, and returns 0 if the index is infinite. -/
37
39
@[to_additive " The index of a subgroup as a natural number,
38
40
and returns 0 if the index is infinite." ]
39
41
noncomputable def index : ℕ :=
40
- (cardinal.mk (quotient_group.quotient H)).to_nat
42
+ (# (quotient_group.quotient H)).to_nat
41
43
42
44
/-- The relative index of a subgroup as a natural number,
43
45
and returns 0 if the relative index is infinite. -/
90
92
91
93
variables (H K L)
92
94
95
+ @[simp, to_additive] lemma index_top : (⊤ : subgroup G).index = 1 :=
96
+ cardinal.to_nat_eq_one_iff_unique.mpr ⟨quotient_group.subsingleton_quotient_top, ⟨1 ⟩⟩
97
+
98
+ @[to_additive] lemma index_bot : (⊥ : subgroup G).index = cardinal.to_nat (#G) :=
99
+ cardinal.to_nat_congr (quotient_group.quotient_bot.to_equiv)
100
+
101
+ @[to_additive] lemma index_bot_eq_card [fintype G] : (⊥ : subgroup G).index = fintype.card G :=
102
+ index_bot.trans cardinal.mk_to_nat_eq_card
103
+
93
104
@[to_additive] lemma index_eq_card [fintype (quotient_group.quotient H)] :
94
105
H.index = fintype.card (quotient_group.quotient H) :=
95
106
cardinal.mk_to_nat_eq_card
0 commit comments