@@ -4,6 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
4
4
Authors: Scott Morrison, Reid Barton
5
5
-/
6
6
import category_theory.fully_faithful
7
+ import category_theory.groupoid
7
8
8
9
namespace category_theory
9
10
@@ -55,18 +56,22 @@ instance induced_category.category : category.{v} (induced_category D F) :=
55
56
id := λ X, 𝟙 (F X),
56
57
comp := λ _ _ _ f g, f ≫ g }
57
58
58
- def induced_functor : induced_category D F ⥤ D :=
59
+ @[simps] def induced_functor : induced_category D F ⥤ D :=
59
60
{ obj := F, map := λ x y f, f }
60
61
61
- @[simp] lemma induced_functor.obj {X} : (induced_functor F).obj X = F X := rfl
62
- @[simp] lemma induced_functor.hom {X Y} {f : X ⟶ Y} : (induced_functor F).map f = f := rfl
63
-
64
62
instance induced_category.full : full (induced_functor F) :=
65
63
{ preimage := λ x y f, f }
66
64
instance induced_category.faithful : faithful (induced_functor F) := {}
67
65
68
66
end induced
69
67
68
+ instance induced_category.groupoid {C : Type u₁} (D : Type u₂) [groupoid.{v} D] (F : C → D) :
69
+ groupoid.{v} (induced_category D F) :=
70
+ { inv := λ X Y f, groupoid.inv f,
71
+ inv_comp' := λ X Y f, groupoid.inv_comp f,
72
+ comp_inv' := λ X Y f, groupoid.comp_inv f,
73
+ .. induced_category.category F }
74
+
70
75
section full_subcategory
71
76
/- A full subcategory is the special case of an induced category with F = subtype.val. -/
72
77
@@ -84,7 +89,7 @@ induced_functor subtype.val
84
89
@[simp] lemma full_subcategory_inclusion.map {X Y} {f : X ⟶ Y} :
85
90
(full_subcategory_inclusion Z).map f = f := rfl
86
91
87
- instance full_subcategory.ful : full (full_subcategory_inclusion Z) :=
92
+ instance full_subcategory.full : full (full_subcategory_inclusion Z) :=
88
93
induced_category.full subtype.val
89
94
instance full_subcategory.faithful : faithful (full_subcategory_inclusion Z) :=
90
95
induced_category.faithful subtype.val
0 commit comments