@@ -318,7 +318,7 @@ lemma coeff_X_pow (m : σ →₀ ℕ) (s : σ) (n : ℕ) :
318
318
by rw [X_pow_eq s n, coeff_monomial]
319
319
320
320
@[simp] lemma coeff_mul_C (n : σ →₀ ℕ) (φ : mv_power_series σ α) (a : α) :
321
- coeff α n (φ * ( C σ α a)) = ( coeff α n φ) * a :=
321
+ coeff α n (φ * C σ α a) = coeff α n φ * a :=
322
322
begin
323
323
rw [coeff_mul n φ], rw [finset.sum_eq_single (n,(0 : σ →₀ ℕ))],
324
324
{ rw [coeff_C, if_pos rfl] },
@@ -332,6 +332,23 @@ begin
332
332
apply add_zero }
333
333
end
334
334
335
+ @[simp] lemma coeff_C_mul (n : σ →₀ ℕ) (φ : mv_power_series σ α) (a : α) :
336
+ coeff α n (C σ α a * φ) = a * coeff α n φ :=
337
+ begin
338
+ rw [coeff_mul n _ φ, finset.sum_eq_single ((0 : σ →₀ ℕ), _)],
339
+ { rw [coeff_C, if_pos rfl] },
340
+ { rintro ⟨i,j⟩ hij hne,
341
+ rw finsupp.mem_antidiagonal_support at hij,
342
+ by_cases hi : i = 0 ,
343
+ { subst hi, simp at *, contradiction },
344
+ { rw [coeff_C, if_neg hi, zero_mul] } },
345
+ { intro h,
346
+ exfalso,
347
+ apply h,
348
+ rw finsupp.mem_antidiagonal_support,
349
+ apply zero_add }
350
+ end
351
+
335
352
lemma coeff_zero_mul_X (φ : mv_power_series σ α) (s : σ) :
336
353
coeff α (0 : σ →₀ ℕ) (φ * X s) = 0 :=
337
354
begin
@@ -382,6 +399,11 @@ instance : semimodule α (mv_power_series σ α) :=
382
399
add_smul := λ a b φ, by simp only [ring_hom.map_add, add_mul],
383
400
zero_smul := λ φ, by simp only [zero_mul, ring_hom.map_zero] }
384
401
402
+ @[simp]
403
+ lemma coeff_smul (f : mv_power_series σ α) (n) (a : α) :
404
+ coeff _ n (a • f) = a * coeff _ n f :=
405
+ coeff_C_mul _ _ _
406
+
385
407
lemma X_inj [nontrivial α] {s t : σ} : (X s : mv_power_series σ α) = X t ↔ s = t :=
386
408
⟨begin
387
409
intro h, replace h := congr_arg (coeff α (single s 1 )) h, rw [coeff_X, if_pos rfl, coeff_X] at h,
@@ -914,9 +936,17 @@ begin
914
936
end
915
937
916
938
@[simp] lemma coeff_mul_C (n : ℕ) (φ : power_series α) (a : α) :
917
- coeff α n (φ * ( C α a)) = ( coeff α n φ) * a :=
939
+ coeff α n (φ * C α a) = coeff α n φ * a :=
918
940
mv_power_series.coeff_mul_C _ φ a
919
941
942
+ @[simp] lemma coeff_C_mul (n : ℕ) (φ : power_series α) (a : α) :
943
+ coeff α n (C α a * φ) = a * coeff α n φ :=
944
+ mv_power_series.coeff_C_mul _ φ a
945
+
946
+ @[simp] lemma coeff_smul (n : ℕ) (φ : power_series α) (a : α) :
947
+ coeff α n (a • φ) = a * coeff α n φ :=
948
+ coeff_C_mul _ _ _
949
+
920
950
@[simp] lemma coeff_succ_mul_X (n : ℕ) (φ : power_series α) :
921
951
coeff α (n+1 ) (φ * X) = coeff α n φ :=
922
952
begin
0 commit comments