Skip to content

Commit

Permalink
feat(analysis/complex/cauchy_integral): review docs, add versions wit…
Browse files Browse the repository at this point in the history
…hout `off_countable` (#11417)
  • Loading branch information
urkud committed Jan 17, 2022
1 parent 391bd21 commit 50bdb29
Show file tree
Hide file tree
Showing 2 changed files with 138 additions and 42 deletions.
170 changes: 128 additions & 42 deletions src/analysis/complex/cauchy_integral.lean
Original file line number Diff line number Diff line change
Expand Up @@ -7,6 +7,7 @@ import measure_theory.measure.complex_lebesgue
import measure_theory.integral.divergence_theorem
import measure_theory.integral.circle_integral
import analysis.analytic.basic
import analysis.complex.re_im_topology
import data.real.cardinality

/-!
Expand Down Expand Up @@ -140,22 +141,20 @@ open_locale interval real nnreal ennreal topological_space big_operators

noncomputable theory

universes u v
universes u

variables {E : Type u} [normed_group E] [normed_space ℂ E] [measurable_space E] [borel_space E]
[second_countable_topology E] [complete_space E]

namespace complex

/-- Suppose that a function `f : ℂ → E` is real differentiable on a rectangle with vertices
`z w : ℂ` and $\frac{\partial f}{\partial \bar z}$ is integrable on this rectangle. Then
the integral of `f` over the boundary of the rectangle is equal to the integral of
/-- Suppose that a function `f : ℂ → E` is continuous on a closed rectangle with opposite corners at
`z w : ℂ`, is *real* differentiable at all but countably many points of the corresponding open
rectangle, and $\frac{\partial f}{\partial \bar z}$ is integrable on this rectangle. Then the
integral of `f` over the boundary of the rectangle is equal to the integral of
$2i\frac{\partial f}{\partial \bar z}=i\frac{\partial f}{\partial x}-\frac{\partial f}{\partial y}$
over the rectangle.
Moreover, the same is true if `f` is only differentiable at points outside of a countable set `s`
and is continuous at the points of this set. -/
lemma integral_boundary_rect_of_has_fderiv_within_at_real_off_countable (f : ℂ → E)
over the rectangle. -/
lemma integral_boundary_rect_of_has_fderiv_at_real_off_countable (f : ℂ → E)
(f' : ℂ → ℂ →L[ℝ] E) (z w : ℂ) (s : set ℂ) (hs : countable s)
(Hc : continuous_on f (re ⁻¹' [z.re, w.re] ∩ im ⁻¹' [z.im, w.im]))
(Hd : ∀ x ∈ (re ⁻¹' (Ioo (min z.re w.re) (max z.re w.re)) ∩
Expand Down Expand Up @@ -190,11 +189,46 @@ begin
simpa only [hF'] using Hi.neg
end

/-- **Cauchy theorem**: the integral of a complex differentiable function over the boundary of a
rectangle equals zero.
/-- Suppose that a function `f : ℂ → E` is continuous on a closed rectangle with opposite corners at
`z w : ℂ`, is *real* differentiable on the corresponding open rectangle, and
$\frac{\partial f}{\partial \bar z}$ is integrable on this rectangle. Then the integral of `f` over
the boundary of the rectangle is equal to the integral of
$2i\frac{\partial f}{\partial \bar z}=i\frac{\partial f}{\partial x}-\frac{\partial f}{\partial y}$
over the rectangle. -/
lemma integral_boundary_rect_of_continuous_on_of_has_fderiv_at_real (f : ℂ → E)
(f' : ℂ → ℂ →L[ℝ] E) (z w : ℂ)
(Hc : continuous_on f (re ⁻¹' [z.re, w.re] ∩ im ⁻¹' [z.im, w.im]))
(Hd : ∀ x ∈ (re ⁻¹' (Ioo (min z.re w.re) (max z.re w.re)) ∩
im ⁻¹' (Ioo (min z.im w.im) (max z.im w.im))), has_fderiv_at f (f' x) x)
(Hi : integrable_on (λ z, I • f' z 1 - f' z I) (re ⁻¹' [z.re, w.re] ∩ im ⁻¹' [z.im, w.im])) :
(∫ x : ℝ in z.re..w.re, f (x + z.im * I)) - (∫ x : ℝ in z.re..w.re, f (x + w.im * I)) +
(I • ∫ y : ℝ in z.im..w.im, f (re w + y * I)) - I • ∫ y : ℝ in z.im..w.im, f (re z + y * I) =
∫ x : ℝ in z.re..w.re, ∫ y : ℝ in z.im..w.im, I • f' (x + y * I) 1 - f' (x + y * I) I :=
integral_boundary_rect_of_has_fderiv_at_real_off_countable f f' z w ∅ countable_empty Hc
(λ x hx, Hd x hx.1) Hi

Moreover, the same is true if `f` is only differentiable at points outside of a countable set `s`
and is continuous at the points of this set. -/
/-- Suppose that a function `f : ℂ → E` is *real* differentiable on a closed rectangle with opposite
corners at `z w : ℂ` and $\frac{\partial f}{\partial \bar z}$ is integrable on this rectangle. Then
the integral of `f` over the boundary of the rectangle is equal to the integral of
$2i\frac{\partial f}{\partial \bar z}=i\frac{\partial f}{\partial x}-\frac{\partial f}{\partial y}$
over the rectangle. -/
lemma integral_boundary_rect_of_differentiable_on_real (f : ℂ → E) (z w : ℂ)
(Hd : differentiable_on ℝ f (re ⁻¹' [z.re, w.re] ∩ im ⁻¹' [z.im, w.im]))
(Hi : integrable_on (λ z, I • fderiv ℝ f z 1 - fderiv ℝ f z I)
(re ⁻¹' [z.re, w.re] ∩ im ⁻¹' [z.im, w.im])) :
(∫ x : ℝ in z.re..w.re, f (x + z.im * I)) - (∫ x : ℝ in z.re..w.re, f (x + w.im * I)) +
(I • ∫ y : ℝ in z.im..w.im, f (re w + y * I)) - I • ∫ y : ℝ in z.im..w.im, f (re z + y * I) =
∫ x : ℝ in z.re..w.re, ∫ y : ℝ in z.im..w.im,
I • fderiv ℝ f (x + y * I) 1 - fderiv ℝ f (x + y * I) I :=
integral_boundary_rect_of_has_fderiv_at_real_off_countable f (fderiv ℝ f) z w ∅ countable_empty
Hd.continuous_on
(λ x hx, Hd.has_fderiv_at $ by simpa only [← mem_interior_iff_mem_nhds,
interior_preimage_re_inter_preimage_im, interval, interior_Icc] using hx.1) Hi

/-- **Cauchy theorem**: the integral of a complex differentiable function over the boundary of a
rectangle equals zero. More precisely, if `f` is continuous on a closed rectangle and is complex
differentiable at all but countably many points of the corresponding open rectangle, then its
integral over the boundary of the rectangle equals zero. -/
lemma integral_boundary_rect_eq_zero_of_differentiable_on_off_countable (f : ℂ → E)
(z w : ℂ) (s : set ℂ) (hs : countable s)
(Hc : continuous_on f (re ⁻¹' [z.re, w.re] ∩ im ⁻¹' [z.im, w.im]))
Expand All @@ -203,17 +237,41 @@ lemma integral_boundary_rect_eq_zero_of_differentiable_on_off_countable (f : ℂ
(∫ x : ℝ in z.re..w.re, f (x + z.im * I)) - (∫ x : ℝ in z.re..w.re, f (x + w.im * I)) +
(I • ∫ y : ℝ in z.im..w.im, f (re w + y * I)) -
I • ∫ y : ℝ in z.im..w.im, f (re z + y * I) = 0 :=
by refine (integral_boundary_rect_of_has_fderiv_within_at_real_off_countable f
by refine (integral_boundary_rect_of_has_fderiv_at_real_off_countable f
(λ z, (fderiv ℂ f z).restrict_scalars ℝ) z w s hs Hc
(λ x hx, (Hd x hx).has_fderiv_at.restrict_scalars ℝ) _).trans _;
simp [← continuous_linear_map.map_smul]

/-- If `f : ℂ → E` is complex differentiable on the closed annulus `r ≤ ∥z - c∥ ≤ R`, `0 < r ≤ R`,
then the integrals of `f z / (z - c)` (formally, `(z - c)⁻¹ • f z`) over the circles
`∥z - c∥ = r` and `∥z - c∥ = R` are equal to each other.
/-- **Cauchy theorem**: the integral of a complex differentiable function over the boundary of a
rectangle equals zero. More precisely, if `f` is continuous on a closed rectangle and is complex
differentiable on the corresponding open rectangle, then its integral over the boundary of the
rectangle equals zero. -/
lemma integral_boundary_rect_eq_zero_of_continuous_on_of_differentiable_on (f : ℂ → E) (z w : ℂ)
(Hc : continuous_on f (re ⁻¹' [z.re, w.re] ∩ im ⁻¹' [z.im, w.im]))
(Hd : differentiable_on ℂ f (re ⁻¹' (Ioo (min z.re w.re) (max z.re w.re)) ∩
im ⁻¹' (Ioo (min z.im w.im) (max z.im w.im)))) :
(∫ x : ℝ in z.re..w.re, f (x + z.im * I)) - (∫ x : ℝ in z.re..w.re, f (x + w.im * I)) +
(I • ∫ y : ℝ in z.im..w.im, f (re w + y * I)) -
I • ∫ y : ℝ in z.im..w.im, f (re z + y * I) = 0 :=
integral_boundary_rect_eq_zero_of_differentiable_on_off_countable f z w ∅ countable_empty
Hc $ λ x hx, Hd.differentiable_at $ (is_open_Ioo.re_prod_im is_open_Ioo).mem_nhds hx.1

Moreover, the same is true if `f` is differentiable at points of the annulus outside of a countable
set `s` and is continuous at points of this set. -/
/-- **Cauchy theorem**: the integral of a complex differentiable function over the boundary of a
rectangle equals zero. More precisely, if `f` is complex differentiable on a closed rectangle, then
its integral over the boundary of the rectangle equals zero. -/
lemma integral_boundary_rect_eq_zero_of_differentiable_on (f : ℂ → E) (z w : ℂ)
(H : differentiable_on ℂ f (re ⁻¹' [z.re, w.re] ∩ im ⁻¹' [z.im, w.im])) :
(∫ x : ℝ in z.re..w.re, f (x + z.im * I)) - (∫ x : ℝ in z.re..w.re, f (x + w.im * I)) +
(I • ∫ y : ℝ in z.im..w.im, f (re w + y * I)) -
I • ∫ y : ℝ in z.im..w.im, f (re z + y * I) = 0 :=
integral_boundary_rect_eq_zero_of_continuous_on_of_differentiable_on f z w H.continuous_on $
H.mono $
inter_subset_inter (preimage_mono Ioo_subset_Icc_self) (preimage_mono Ioo_subset_Icc_self)

/-- If `f : ℂ → E` is continuous the closed annulus `r ≤ ∥z - c∥ ≤ R`, `0 < r ≤ R`, and is complex
differentiable at all but countably many points of its interior, then the integrals of
`f z / (z - c)` (formally, `(z - c)⁻¹ • f z`) over the circles `∥z - c∥ = r` and `∥z - c∥ = R` are
equal to each other. -/
lemma circle_integral_sub_center_inv_smul_eq_of_differentiable_on_annulus_off_countable
{c : ℂ} {r R : ℝ} (h0 : 0 < r) (hle : r ≤ R) {f : ℂ → E} {s : set ℂ} (hs : countable s)
(hc : continuous_on f (closed_ball c R \ ball c r))
Expand Down Expand Up @@ -248,10 +306,10 @@ begin
_ hs hc hd
end

/-- **Cauchy integral formula** for the value at the center of a disc. If `f` is differentiable on a
punctured closed disc of radius `R` and has a limit `y` at the center of the disc, then the integral
$\int_{|z|=R} f(z)\,d(\arg z)=-i\int_{|z|=R}\frac{f(z)\,dz}{z}$ is equal to $2πy`. Moreover, the
same is true if at the points of some countable set, `f` is only continuous, not differentiable. -/
/-- **Cauchy integral formula** for the value at the center of a disc. If `f` is continuous on a
punctured closed disc of radius `R`, is differentiable at all but countably many points of the
interior of this disc, and has a limit `y` at the center of the disc, then the integral
$\oint_{∥z-c∥=R} \frac{f(z)}{z-c}\,dz$ is equal to $2πiy`. -/
lemma circle_integral_sub_center_inv_smul_of_differentiable_on_off_countable_of_tendsto
{c : ℂ} {R : ℝ} (h0 : 0 < R) {f : ℂ → E} {y : E} {s : set ℂ} (hs : countable s)
(hc : continuous_on f (closed_ball c R \ {c}))
Expand Down Expand Up @@ -305,10 +363,9 @@ begin
... = ε : by { field_simp [hr0.ne', real.two_pi_pos.ne'], ac_refl }
end

/-- **Cauchy integral formula** for the value at the center of a disc. If `f` is differentiable on a
closed disc of radius `R`, then the integral
$\int_{|z|=R} f(z)\,d(\arg z)=-i\int_{|z|=R}\frac{f(z)\,dz}{z}$ is equal to $2πy`. Moreover, the
same is true if at the points of some countable set, `f` is only continuous, not differentiable. -/
/-- **Cauchy integral formula** for the value at the center of a disc. If `f : ℂ → E` is continuous
on a closed disc of radius `R` and is complex differentiable at all but countably many points of its
interior, then the integral $\oint_{|z-c|=R} \frac{f(z)}{z-c}\,dz$ is equal to $2πiy`. -/
lemma circle_integral_sub_center_inv_smul_of_differentiable_on_off_countable {R : ℝ} (h0 : 0 < R)
{f : ℂ → E} {c : ℂ} {s : set ℂ} (hs : countable s)
(hc : continuous_on f (closed_ball c R)) (hd : ∀ z ∈ ball c R \ s, differentiable_at ℂ f z) :
Expand All @@ -317,9 +374,9 @@ circle_integral_sub_center_inv_smul_of_differentiable_on_off_countable_of_tendst
(hc.mono $ diff_subset _ _) (λ z hz, hd z ⟨hz.1.1, hz.2⟩)
(hc.continuous_at $ closed_ball_mem_nhds _ h0).continuous_within_at

/-- **Cauchy theorem**: the integral of a complex differentiable function over the boundary of a
disc equals zero. Moreover, the same is true if at the points of some countable set, `f` is only
continuous. -/
/-- **Cauchy theorem**: if `f : ℂ → E` is continuous on a closed ball `{z | ∥z - c∥ ≤ R}` and is
complex differentiable at all but countably many points of its interior, then the integral
$\oint_{|z-c|=R}f(z)\,dz$ equals zero. -/
lemma circle_integral_eq_zero_of_differentiable_on_off_countable {R : ℝ} (h0 : 0 ≤ R) {f : ℂ → E}
{c : ℂ} {s : set ℂ} (hs : countable s) (hc : continuous_on f (closed_ball c R))
(hd : ∀ z ∈ ball c R \ s, differentiable_at ℂ f z) :
Expand Down Expand Up @@ -378,9 +435,9 @@ begin
(hc'.smul continuous_on_const).circle_integrable hR.le]
end

/-- **Cauchy integral formula**: if `f : ℂ → E` is complex differentiable on a closed disc of radius
`R`, then for any `w` in the corresponding open disc we have
$\frac{1}{2πi}\oint_{|z-c|=R}(z-w)^{-1}f(z)\,dz=f(w)$.
/-- **Cauchy integral formula**: if `f : ℂ → E` is continuous on a closed disc of radius `R` and is
complex differentiable at all but countably many points of its interior, then for any `w` in this
interior we have $\frac{1}{2πi}\oint_{|z-c|=R}(z-w)^{-1}f(z)\,dz=f(w)$.
-/
lemma two_pi_I_inv_smul_circle_integral_sub_inv_smul_of_differentiable_on_off_countable
{R : ℝ} {c w : ℂ} {f : ℂ → E} {s : set ℂ} (hs : countable s) (hw : w ∈ ball c R)
Expand Down Expand Up @@ -417,9 +474,9 @@ begin
exact ⟨g x, (hlu_sub hx.1).1, (hlu_sub hx.1).2, hx.2
end

/-- **Cauchy integral formula**: if `f : ℂ → E` is complex differentiable on a closed disc of radius
`R`, then for any `w` in the corresponding open disc we have
$\oint_{|z-c|=R}(z-w)^{-1}f(z)\,dz=2\pi i\,f(w)$.
/-- **Cauchy integral formula**: if `f : ℂ → E` is continuous on a closed disc of radius `R` and is
complex differentiable at all but countably many points of its interior, then for any `w` in this
interior we have $\oint_{|z-c|=R}(z-w)^{-1}f(z)\,dz=2πif(w)$.
-/
lemma circle_integral_sub_inv_smul_of_differentiable_on_off_countable
{R : ℝ} {c w : ℂ} {f : ℂ → E} {s : set ℂ} (hs : countable s) (hw : w ∈ ball c R)
Expand All @@ -428,9 +485,29 @@ lemma circle_integral_sub_inv_smul_of_differentiable_on_off_countable
by { rw [← two_pi_I_inv_smul_circle_integral_sub_inv_smul_of_differentiable_on_off_countable
hs hw hc hd, smul_inv_smul₀], simp [real.pi_ne_zero, I_ne_zero] }

/-- **Cauchy integral formula**: if `f : ℂ → ℂ` is complex differentiable on a closed disc of radius
`R`, then for any `w` in the corresponding open disc we have
$\oint_{|z-c|=R}\frac{f(z)}{z-w}dz=2\pi i\,f(w)$. -/
/-- **Cauchy integral formula**: if `f : ℂ → E` is continuous on a closed disc of radius `R` and is
complex differentiable on its interior, then for any `w` in this interior we have
$\oint_{|z-c|=R}(z-w)^{-1}f(z)\,dz=2πif(w)$.
-/
lemma circle_integral_sub_inv_smul_of_continuous_on_of_differentiable_on
{R : ℝ} {c w : ℂ} {f : ℂ → E} (hw : w ∈ ball c R)
(hc : continuous_on f (closed_ball c R)) (hd : differentiable_on ℂ f (ball c R)) :
∮ z in C(c, R), (z - w)⁻¹ • f z = (2 * π * I : ℂ) • f w :=
circle_integral_sub_inv_smul_of_differentiable_on_off_countable countable_empty hw hc $ λ z hz,
hd.differentiable_at (is_open_ball.mem_nhds hz.1)

/-- **Cauchy integral formula**: if `f : ℂ → E` is complex differentiable on a closed disc of radius
`R`, then for any `w` in its interior we have $\oint_{|z-c|=R}(z-w)^{-1}f(z)\,dz=2πif(w)$. -/
lemma circle_integral_sub_inv_smul_of_differentiable_on
{R : ℝ} {c w : ℂ} {f : ℂ → E} (hw : w ∈ ball c R) (hd : differentiable_on ℂ f (closed_ball c R)) :
∮ z in C(c, R), (z - w)⁻¹ • f z = (2 * π * I : ℂ) • f w :=
circle_integral_sub_inv_smul_of_continuous_on_of_differentiable_on hw hd.continuous_on $
hd.mono $ ball_subset_closed_ball

/-- **Cauchy integral formula**: if `f : ℂ → ℂ` is continuous on a closed disc of radius `R` and is
complex differentiable at all but countably many points of its interior, then for any `w` in this
interior we have $\oint_{|z-c|=R}\frac{f(z)}{z-w}dz=2\pi i\,f(w)$.
-/
lemma circle_integral_div_sub_of_differentiable_on_off_countable {R : ℝ} {c w : ℂ} {s : set ℂ}
(hs : countable s) (hw : w ∈ ball c R) {f : ℂ → ℂ} (hc : continuous_on f (closed_ball c R))
(hd : ∀ z ∈ ball c R \ s, differentiable_at ℂ f z) :
Expand Down Expand Up @@ -458,6 +535,15 @@ lemma has_fpower_series_on_ball_of_differentiable_off_countable {R : ℝ≥0} {c
((hc.mono sphere_subset_closed_ball).circle_integrable R.2) hR).has_sum hw
end }

/-- If `f : ℂ → E` is continuous on a closed ball of positive radius and is complex differentiable
on its interior, then it is analytic on the open ball with coefficients of the power series given by
Cauchy integral formulas. -/
lemma has_fpower_series_on_ball_of_continuous_on_of_differentiable_on {R : ℝ≥0} {c : ℂ} {f : ℂ → E}
(hc : continuous_on f (closed_ball c R)) (hd : differentiable_on ℂ f (ball c R)) (hR : 0 < R) :
has_fpower_series_on_ball f (cauchy_power_series f c R) c R :=
has_fpower_series_on_ball_of_differentiable_off_countable countable_empty hc
(λ z hz, hd.differentiable_at $ is_open_ball.mem_nhds hz.1) hR

/-- If `f : ℂ → E` is complex differentiable on a closed disc of positive radius, then it is
analytic on the corresponding open disc, and the coefficients of the power series are given by
Cauchy integral formulas. See also
Expand All @@ -466,8 +552,8 @@ weaker assumptions. -/
protected lemma _root_.differentiable_on.has_fpower_series_on_ball {R : ℝ≥0} {c : ℂ} {f : ℂ → E}
(hd : differentiable_on ℂ f (closed_ball c R)) (hR : 0 < R) :
has_fpower_series_on_ball f (cauchy_power_series f c R) c R :=
has_fpower_series_on_ball_of_differentiable_off_countable countable_empty hd.continuous_on
(λ z hz, hd.differentiable_at $ closed_ball_mem_nhds_of_mem hz.1) hR
has_fpower_series_on_ball_of_continuous_on_of_differentiable_on hd.continuous_on
(hd.mono ball_subset_closed_ball) hR

/-- If `f : ℂ → E` is complex differentiable on some set `s`, then it is analytic at any point `z`
such that `s ∈ 𝓝 z` (equivalently, `z ∈ interior s`). -/
Expand All @@ -480,7 +566,7 @@ begin
end

/-- A complex differentiable function `f : ℂ → E` is analytic at every point. -/
protected lemma differentiable.analytic_at {f : ℂ → E} (hf : differentiable ℂ f) (z : ℂ) :
protected lemma _root_.differentiable.analytic_at {f : ℂ → E} (hf : differentiable ℂ f) (z : ℂ) :
analytic_at ℂ f z :=
hf.differentiable_on.analytic_at univ_mem

Expand Down
10 changes: 10 additions & 0 deletions src/analysis/complex/re_im_topology.lean
Original file line number Diff line number Diff line change
Expand Up @@ -150,3 +150,13 @@ by simpa only [closure_Ici, closure_Iic, frontier_Ici, frontier_Iic]
using frontier_preimage_re_inter_preimage_im (Ici a) (Iic b)

end complex

open complex

lemma is_open.re_prod_im {s t : set ℝ} (hs : is_open s) (ht : is_open t) :
is_open (re ⁻¹' s ∩ im ⁻¹' t) :=
(hs.preimage continuous_re).inter (ht.preimage continuous_im)

lemma is_closed.re_prod_im {s t : set ℝ} (hs : is_closed s) (ht : is_closed t) :
is_closed (re ⁻¹' s ∩ im ⁻¹' t) :=
(hs.preimage continuous_re).inter (ht.preimage continuous_im)

0 comments on commit 50bdb29

Please sign in to comment.