Skip to content
This repository was archived by the owner on Jul 24, 2024. It is now read-only.

Commit 5455cb0

Browse files
committed
chore(linear_algebra/dual): prove a lemma with rfl (#18444)
I was surprised that `dsimp` didn't clean this up for me. The proof that used to be here was certainly not interesting.
1 parent 10d8872 commit 5455cb0

File tree

1 file changed

+1
-5
lines changed

1 file changed

+1
-5
lines changed

src/linear_algebra/dual.lean

Lines changed: 1 addition & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -118,11 +118,7 @@ instance : has_coe_to_fun (dual R M) (λ _, M → R) := ⟨linear_map.to_fun⟩
118118
`module.eval_equiv`. -/
119119
def eval : M →ₗ[R] (dual R (dual R M)) := linear_map.flip linear_map.id
120120

121-
@[simp] lemma eval_apply (v : M) (a : dual R M) : eval R M v a = a v :=
122-
begin
123-
dunfold eval,
124-
rw [linear_map.flip_apply, linear_map.id_apply]
125-
end
121+
@[simp] lemma eval_apply (v : M) (a : dual R M) : eval R M v a = a v := rfl
126122

127123
variables {R M} {M' : Type*} [add_comm_monoid M'] [module R M']
128124

0 commit comments

Comments
 (0)