Skip to content
This repository was archived by the owner on Jul 24, 2024. It is now read-only.

Commit 56f2c05

Browse files
committed
chore(algebra/regular): rename lemma is_regular_of_cancel_monoid_with_zero to is_regular_of_ne_zero (#6408)
Change the name of lemma is_regular_of_cancel_monoid_with_zero to the shorter is_regular_of_ne_zero. Zulip reference: https://leanprover.zulipchat.com/#narrow/stream/267928-condensed-mathematics
1 parent 4b6680a commit 56f2c05

File tree

1 file changed

+3
-3
lines changed

1 file changed

+3
-3
lines changed

src/algebra/regular.lean

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -13,8 +13,8 @@ import algebra.iterate_hom
1313
We introduce left-regular, right-regular and regular elements.
1414
1515
By definition, a regular element in a commutative ring is a non-zero divisor.
16-
Lemma `is_regular_of_cancel_monoid_with_zero` implies that every non-zero element of an integral
17-
domain is regular.
16+
Lemma `is_regular_of_ne_zero` implies that every non-zero element of an integral domain is regular.
17+
Since it assumes that the ring is a `cancel_monoid_with_zero` it applies also, for instance, to `ℕ`.
1818
1919
The lemmas in Section `mul_zero_class` show that the `0` element is (left/right-)regular if and
2020
only if the `mul_zero_class` is trivial. This is useful when figuring out stopping conditions for
@@ -279,7 +279,7 @@ section cancel_monoid_with_zero
279279
variables [cancel_monoid_with_zero R]
280280

281281
/-- Non-zero elements of an integral domain are regular. -/
282-
lemma is_regular_of_cancel_monoid_with_zero (a0 : a ≠ 0) : is_regular a :=
282+
lemma is_regular_of_ne_zero (a0 : a ≠ 0) : is_regular a :=
283283
⟨λ b c, (mul_right_inj' a0).mp, λ b c, (mul_left_inj' a0).mp⟩
284284

285285
end cancel_monoid_with_zero

0 commit comments

Comments
 (0)