This repository was archived by the owner on Jul 24, 2024. It is now read-only.
File tree Expand file tree Collapse file tree 1 file changed +10
-1
lines changed Expand file tree Collapse file tree 1 file changed +10
-1
lines changed Original file line number Diff line number Diff line change @@ -1194,7 +1194,7 @@ iff.intro is_o.tendsto_div_nhds_zero $ λ h,
1194
1194
theorem is_o_iff_tendsto {f g : α → 𝕜} {l : filter α}
1195
1195
(hgf : ∀ x, g x = 0 → f x = 0 ) :
1196
1196
is_o f g l ↔ tendsto (λ x, f x / (g x)) l (𝓝 0 ) :=
1197
- ⟨λ h, h.tendsto_div_nhds_zero, ( is_o_iff_tendsto' (eventually_of_forall hgf)). 2 ⟩
1197
+ is_o_iff_tendsto' (eventually_of_forall hgf)
1198
1198
1199
1199
alias is_o_iff_tendsto' ↔ _ asymptotics.is_o_of_tendsto'
1200
1200
alias is_o_iff_tendsto ↔ _ asymptotics.is_o_of_tendsto
@@ -1232,6 +1232,15 @@ by simp [function.const, this]
1232
1232
calc is_o f' g' (pure x) ↔ is_o (λ y : α, f' x) (λ _, g' x) (pure x) : is_o_congr rfl rfl
1233
1233
... ↔ f' x = 0 : is_o_const_const_iff
1234
1234
1235
+ lemma is_o_const_id_comap_norm_at_top (c : F') : is_o (λ x : E', c) id (comap norm at_top) :=
1236
+ is_o_const_left.2 $ or.inr tendsto_comap
1237
+
1238
+ lemma is_o_const_id_at_top (c : E') : is_o (λ x : ℝ, c) id at_top :=
1239
+ is_o_const_left.2 $ or.inr tendsto_abs_at_top_at_top
1240
+
1241
+ lemma is_o_const_id_at_bot (c : E') : is_o (λ x : ℝ, c) id at_bot :=
1242
+ is_o_const_left.2 $ or.inr tendsto_abs_at_bot_at_top
1243
+
1235
1244
/-!
1236
1245
### Eventually (u / v) * v = u
1237
1246
You can’t perform that action at this time.
0 commit comments