This repository was archived by the owner on Jul 24, 2024. It is now read-only.
File tree Expand file tree Collapse file tree 1 file changed +23
-0
lines changed
src/analysis/normed_space Expand file tree Collapse file tree 1 file changed +23
-0
lines changed Original file line number Diff line number Diff line change @@ -237,3 +237,26 @@ def to_continuous_linear_equiv_of_continuous (e : E ≃ₗ[𝕜] F) (h : continu
237
237
⇑(e.to_continuous_linear_equiv_of_continuous h).symm = e.symm := rfl
238
238
239
239
end linear_equiv
240
+
241
+ namespace continuous_linear_equiv
242
+
243
+ /-- Convert a bijective continuous linear map `f : E →L[𝕜] F` between two Banach spaces
244
+ to a continuous linear equivalence. -/
245
+ noncomputable def of_bijective (f : E →L[𝕜] F) (hinj : f.ker = ⊥) (hsurj : f.range = ⊤) :
246
+ E ≃L[𝕜] F :=
247
+ (linear_equiv.of_bijective ↑f hinj hsurj).to_continuous_linear_equiv_of_continuous f.continuous
248
+
249
+ @[simp] lemma coe_fn_of_bijective (f : E →L[𝕜] F) (hinj : f.ker = ⊥) (hsurj : f.range = ⊤) :
250
+ ⇑(of_bijective f hinj hsurj) = f := rfl
251
+
252
+ @[simp] lemma of_bijective_symm_apply_apply (f : E →L[𝕜] F) (hinj : f.ker = ⊥)
253
+ (hsurj : f.range = ⊤) (x : E) :
254
+ (of_bijective f hinj hsurj).symm (f x) = x :=
255
+ (of_bijective f hinj hsurj).symm_apply_apply x
256
+
257
+ @[simp] lemma of_bijective_apply_symm_apply (f : E →L[𝕜] F) (hinj : f.ker = ⊥)
258
+ (hsurj : f.range = ⊤) (y : F) :
259
+ f ((of_bijective f hinj hsurj).symm y) = y :=
260
+ (of_bijective f hinj hsurj).apply_symm_apply y
261
+
262
+ end continuous_linear_equiv
You can’t perform that action at this time.
0 commit comments