Skip to content
This repository was archived by the owner on Jul 24, 2024. It is now read-only.

Commit 58789f7

Browse files
committed
feat(analysis/normed_space/banach): add continuous_linear_equiv.of_bijective (#2774)
1 parent 80ad9ed commit 58789f7

File tree

1 file changed

+23
-0
lines changed

1 file changed

+23
-0
lines changed

src/analysis/normed_space/banach.lean

Lines changed: 23 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -237,3 +237,26 @@ def to_continuous_linear_equiv_of_continuous (e : E ≃ₗ[𝕜] F) (h : continu
237237
⇑(e.to_continuous_linear_equiv_of_continuous h).symm = e.symm := rfl
238238

239239
end linear_equiv
240+
241+
namespace continuous_linear_equiv
242+
243+
/-- Convert a bijective continuous linear map `f : E →L[𝕜] F` between two Banach spaces
244+
to a continuous linear equivalence. -/
245+
noncomputable def of_bijective (f : E →L[𝕜] F) (hinj : f.ker = ⊥) (hsurj : f.range = ⊤) :
246+
E ≃L[𝕜] F :=
247+
(linear_equiv.of_bijective ↑f hinj hsurj).to_continuous_linear_equiv_of_continuous f.continuous
248+
249+
@[simp] lemma coe_fn_of_bijective (f : E →L[𝕜] F) (hinj : f.ker = ⊥) (hsurj : f.range = ⊤) :
250+
⇑(of_bijective f hinj hsurj) = f := rfl
251+
252+
@[simp] lemma of_bijective_symm_apply_apply (f : E →L[𝕜] F) (hinj : f.ker = ⊥)
253+
(hsurj : f.range = ⊤) (x : E) :
254+
(of_bijective f hinj hsurj).symm (f x) = x :=
255+
(of_bijective f hinj hsurj).symm_apply_apply x
256+
257+
@[simp] lemma of_bijective_apply_symm_apply (f : E →L[𝕜] F) (hinj : f.ker = ⊥)
258+
(hsurj : f.range = ⊤) (y : F) :
259+
f ((of_bijective f hinj hsurj).symm y) = y :=
260+
(of_bijective f hinj hsurj).apply_symm_apply y
261+
262+
end continuous_linear_equiv

0 commit comments

Comments
 (0)