@@ -87,7 +87,7 @@ If the space is also compact:
87
87
https://en.wikipedia.org/wiki/Separation_axiom
88
88
-/
89
89
90
- open set filter
90
+ open set filter topological_space
91
91
open_locale topological_space filter classical
92
92
93
93
universes u v
@@ -1051,6 +1051,17 @@ begin
1051
1051
exact ⟨t, h2t, h3t, compact_closure_of_subset_compact hKc h1t⟩
1052
1052
end
1053
1053
1054
+ /--
1055
+ In a locally compact T₂ space, every compact set has an open neighborhood with compact closure.
1056
+ -/
1057
+ lemma exists_open_superset_and_is_compact_closure [locally_compact_space α] [t2_space α]
1058
+ {K : set α} (hK : is_compact K) : ∃ V, is_open V ∧ K ⊆ V ∧ is_compact (closure V) :=
1059
+ begin
1060
+ rcases exists_compact_superset hK with ⟨K', hK', hKK'⟩,
1061
+ refine ⟨interior K', is_open_interior, hKK',
1062
+ compact_closure_of_subset_compact hK' interior_subset⟩,
1063
+ end
1064
+
1054
1065
lemma is_preirreducible_iff_subsingleton [t2_space α] (S : set α) :
1055
1066
is_preirreducible S ↔ subsingleton S :=
1056
1067
begin
@@ -1181,6 +1192,42 @@ begin
1181
1192
tauto
1182
1193
end
1183
1194
1195
+ /--
1196
+ In a locally compact regular space, given a compact set `K` inside an open set `U`, we can find a
1197
+ compact set `K'` between these sets: `K` is inside the interior of `K'` and `K' ⊆ U`.
1198
+ -/
1199
+ lemma exists_compact_between [locally_compact_space α] [regular_space α]
1200
+ {K U : set α} (hK : is_compact K) (hU : is_open U) (hKU : K ⊆ U) :
1201
+ ∃ K', is_compact K' ∧ K ⊆ interior K' ∧ K' ⊆ U :=
1202
+ begin
1203
+ choose C hxC hCU hC using λ x : K, nhds_is_closed (hU.mem_nhds $ hKU x.2 ),
1204
+ choose L hL hxL using λ x : K, exists_compact_mem_nhds (x : α),
1205
+ have : K ⊆ ⋃ x, interior (L x) ∩ interior (C x), from
1206
+ λ x hx, mem_Union.mpr ⟨⟨x, hx⟩,
1207
+ ⟨mem_interior_iff_mem_nhds.mpr (hxL _), mem_interior_iff_mem_nhds.mpr (hxC _)⟩⟩,
1208
+ rcases hK.elim_finite_subcover _ _ this with ⟨t, ht⟩,
1209
+ { refine ⟨⋃ x ∈ t, L x ∩ C x, t.compact_bUnion (λ x _, (hL x).inter_right (hC x)), λ x hx, _, _⟩,
1210
+ { obtain ⟨y, hyt, hy : x ∈ interior (L y) ∩ interior (C y)⟩ := mem_bUnion_iff.mp (ht hx),
1211
+ rw [← interior_inter] at hy,
1212
+ refine interior_mono (subset_bUnion_of_mem hyt) hy },
1213
+ { simp_rw [Union_subset_iff], rintro x -, exact (inter_subset_right _ _).trans (hCU _) } },
1214
+ { exact λ _, is_open_interior.inter is_open_interior }
1215
+ end
1216
+
1217
+ /--
1218
+ In a locally compact regular space, given a compact set `K` inside an open set `U`, we can find a
1219
+ open set `V` between these sets with compact closure: `K ⊆ V` and the closure of `V` is inside `U`.
1220
+ -/
1221
+ lemma exists_open_between_and_is_compact_closure [locally_compact_space α] [regular_space α]
1222
+ {K U : set α} (hK : is_compact K) (hU : is_open U) (hKU : K ⊆ U) :
1223
+ ∃ V, is_open V ∧ K ⊆ V ∧ closure V ⊆ U ∧ is_compact (closure V) :=
1224
+ begin
1225
+ rcases exists_compact_between hK hU hKU with ⟨V, hV, hKV, hVU⟩,
1226
+ refine ⟨interior V, is_open_interior, hKV,
1227
+ (closure_minimal interior_subset hV.is_closed).trans hVU,
1228
+ compact_closure_of_subset_compact hV interior_subset⟩,
1229
+ end
1230
+
1184
1231
end regularity
1185
1232
1186
1233
section normality
@@ -1226,8 +1273,6 @@ begin
1226
1273
exact compact_compact_separated hs.is_compact ht.is_compact st.eq_bot
1227
1274
end
1228
1275
1229
- open topological_space
1230
-
1231
1276
variable (α)
1232
1277
1233
1278
/-- A regular topological space with second countable topology is a normal space.
@@ -1352,8 +1397,6 @@ end
1352
1397
1353
1398
section profinite
1354
1399
1355
- open topological_space
1356
-
1357
1400
variables [t2_space α]
1358
1401
1359
1402
/-- A Hausdorff space with a clopen basis is totally separated. -/
@@ -1443,8 +1486,6 @@ end profinite
1443
1486
1444
1487
section locally_compact
1445
1488
1446
- open topological_space
1447
-
1448
1489
variables {H : Type *} [topological_space H] [locally_compact_space H] [t2_space H]
1449
1490
1450
1491
/-- A locally compact Hausdorff totally disconnected space has a basis with clopen elements. -/
0 commit comments